905 resultados para in-bin drying


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many industrial applications, such as the printing and coatings industry, wetting of porous materials by liquids includes not only imbibition and permeation into the bulk but also surface spreading and evaporation. By understanding these phenomena, valuable information can be obtained for improved process control, runnability and printability, in which liquid penetration and subsequent drying play important quality and economic roles. Knowledge of the position of the wetting front and the distribution/degree of pore filling within the structure is crucial in describing the transport phenomena involved. Although exemplifying paper as a porous medium in this work, the generalisation to dynamic liquid transfer onto a surface, including permeation and imbibition into porous media, is of importance to many industrial and naturally occurring environmental processes. This thesis explains the phenomena in the field of heatset web offset printing but the content and the analyses are applicable in many other printing methods and also other technologies where water/moisture monitoring is crucial in order to have a stable process and achieve high quality end products. The use of near-infrared technology to study the water and moisture response of porous pigmented structures is presented. The use of sensitive surface chemical and structural analysis, as well as the internal structure investigation of a porous structure, to inspect liquid wetting and distribution, complements the information obtained by spectroscopic techniques. Strong emphasis has been put on the scale of measurement, to filter irrelevant information and to understand the relationship between interactions involved. The near-infrared spectroscopic technique, presented here, samples directly the changes in signal absorbance and its variation in the process at multiple locations in a print production line. The in-line non-contact measurements are facilitated by using several diffuse reflectance probes, giving the absolute water/moisture content from a defined position in the dynamic process in real-time. The nearinfrared measurement data illustrate the changes in moisture content as the paper is passing through the printing nips and dryer, respectively, and the analysis of the mechanisms involved highlight the roles of the contacting surfaces and the relative liquid carrier properties of both non-image and printed image areas. The thesis includes laboratory studies on wetting of porous media in the form of coated paper and compressed pigment tablets by mono-, dual-, and multi-component liquids, and paper water/moisture content analysis in both offline and online conditions, thus also enabling direct sampling of temporal water/moisture profiles from multiple locations. One main focus in this thesis was to establish a measurement system which is able to monitor rapid changes in moisture content of paper. The study suggests that near-infrared diffuse reflectance spectroscopy can be used as a moisture sensitive system and to provide accurate online qualitative indicators, but, also, when accurately calibrated, can provide quantification of water/moisture levels, its distribution and dynamic liquid transfer. Due to the high sensitivity, samples can be measured with excellent reproducibility and good signal to noise ratio. Another focus of this thesis was on the evolution of the moisture content, i.e. changes in moisture content referred to (re)wetting, and liquid distribution during printing of coated paper. The study confirmed different wetting phases together with the factors affecting each phase both for a single droplet and a liquid film applied on a porous substrate. For a single droplet, initial capillary driven imbibition is followed by equilibrium pore filling and liquid retreat by evaporation. In the case of a liquid film applied on paper, the controlling factors defining the transportation were concluded to be the applied liquid volume in relation to surface roughness, capillarity and permeability of the coating giving the liquid uptake capacity. The printing trials confirmed moisture gradients in the printed sheet depending on process parameters such as speed, fountain solution dosage and drying conditions as well as the printed layout itself. Uneven moisture distribution in the printed sheet was identified to be one of the sources for waving appearance and the magnitude of waving was influenced by the drying conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An outbreak of hepatogenous photosensitization is reported in a flock of 28 sheep grazing Brachiaria decumbens in Mato Grosso do Sul State, Central-Western Brazil. Seven lambs and an adult sheep were affected and 6 of them died. Two surviving affected lambs and one lamb without clinical signs had increased serum values of gamma glutamyltransferase, bilirubin, and cholesterol. In two adult unaffected sheep those parameters were within normal values. An adult sheep submitted to necropsy presented moderate body condition, unilateral corneal opacity, drying of the muzzle, moderate jaundice, increased lobular pattern of the liver, and a distended gallbladder. Histological lesions were epithelial degeneration, necrosis, and hyperplasia of small bile ducts. Mild amounts of foamy macrophages were observed, mainly in the centroacinar zone. Diffuse swelling and vacuolation were observed in hepatocytes. Crystal negative images were found within bile ducts, foamy macrophages, and the lumen of some renal tubules. The heart showed multifocal areas of degeneration and necrosis of the muscle fibers. Pasture samples (Brachiaria decumbens) contained 2.36% of protodioscin. No Pithomyces chartarum spores were found in the pasture. Samples from a similar neighboring B. decumbens pasture grazed by cattle without photosensitization contained 1.63% of protodioscin isomers. Outbreaks of photosensitization caused by Brachiaria spp. are common in cattle in the Brazilian Cerrado (savanna) with about 51 million hectares of Brachiaria spp pastures. Sheep farming has been recently developed in this region, and the number of sheep is increasing significantly. Because sheep are more susceptible than cattle to lithogenic saponins, poisoning by Brachiaria should be an important limiting factor for the sheep industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper was to study the etiology of mastitis, determine the antimicrobial susceptibility profile of Staphylococcus spp. and to identify the risk factors associated with infection in dairy cows in the states of Bahia and Pernambuco, Brazil. From the 2,064 milk samples analyzed, 2.6% were associated with cases of clinical mastitis and 28.2% with subclinical mastitis. In the microbiological culture, Staphylococcus spp. (49.1%) and Corynebacterium spp. (35.3%) were the main agents found, followed by Prototheca spp. (4.6%) and Gram negative bacilli (3.6%). In the antimicrobial susceptibility testing, all 218 Staphylococcus spp. were susceptible to rifampicin and the least effective drug was amoxicillin (32.6%). Multidrug resistance to three or more drugs was observed in 65.6% of Staphylococcus spp. The risk factors identified for mastitis were the extensive production system, not providing feed supplements, teat drying process, not disinfecting the teats before and after milking, and inadequate hygiene habits of the milking workers. The presence of multiresistant isolates in bovine milk demonstrates the importance of the choice and appropriate use of antimicrobial agents. Prophylactic and control measures, including teat antisepsis and best practices for achieving hygienic milking should be established in order to prevent new cases of the disease in herds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste incineration plants are increasingly established in China. A low heating value and high moisture content, due to a large proportion of biowaste in the municipal solid waste (MSW), can be regarded as typical characteristics of Chinese MSW. Two incineration technologies have been mainly established in China: stoker grate and circular fluidized bed (CFB). Both of them are designed to incinerate mixed MSW. However, there have been difficulties to reach the sufficient temperature in the combustion process due to the low heating value of the MSW. That is contributed to the usage of an auxiliary fossil fuel, which is often used during the whole incineration process. The objective of this study was to design alternative Waste-to-energy (WTE) scenarios for existing WTE plants with the aim to improve the material and energy efficiency as well as the feasibility of the plants. Moreover, the aim of this thesis was to find the key factors that affect to the feasibility of the scenarios. Five different WTE plants were selected as study targets. The necessary data for calculation was gained from literature as well as received from the operators of the target WTE plants. The created scenarios were based on mechanical-biological treatment (MBT) technologies, in which the produced solid recovered fuel (SRF) was fed as an auxiliary fuel into a WTE plant replacing the fossil fuel. The mechanically separated biowaste was treated either in an anaerobic digestion (AD) plant, a biodrying plant, a thermal drying plant, or a combined AD plant + thermal drying plant. An interactive excel spreadsheet based computation tool was designed to estimate the viability of the scenarios in different WTE cases. The key figures of the improved material and energy efficiency, such as additional electricity generated and avoided waste for landfill, were got as results. Furthermore, economic indicators such as annual profits (or costs), payback period, and internal rate of return (IRR) were gained as results. The results show that the AD scenario was the most profitable in most of the cases. The current heating value of MSW and the tipping fee for the received MSW appeared as the most important factor in terms of feasibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: The aim of the present study was to report the occurrence of members of the Mollicutesclass in the reproductive system of dairy cattle in Brazil. Five farms containing dairy cattle were visited in January of 2012. In total, 100 cows of different ages, breeds and stages of lactation were examined in the present study. The cows were part of intensive or semi-intensive management systems and were submitted to mechanical milking or hand milking. The samples were collected after washing the vulvar region with water and soap, and then drying it with paper towels and disinfecting the area with alcohol (70°GL). Vaginal mucous was collected using a sterile alginate cotton swab, which was rubbed on the vagina, as well as the lateral and internal walls. Vulvovaginal mucous samples were cultured in both liquid and solid modified Hayflick´s medium, for mycoplasmas, and UB medium, for ureaplasmas. The PCR assays for Mollicutesand Ureaplasmaspp. were performed according to the standard protocols described in the current literature. During isolation, the frequency of Mycoplasmaspp. was of 13.0% (13/100) and for Ureaplasmaspp. was of 6.0% (6/100). In the PCR assays the frequency of Mollicuteswas of 26.0% (26/100) and for Ureaplasmaspp. was of 13.0% (13/100) in the dairy cattle studied. This is the first report of these agents in reproductive system of bovine of the Pernambuco state. Further studies are necessary to determine the pathogenic potential and species of these field isolates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The irrigation is a technique developed to supply the hydric needs of the plants. The use of the water should be optimized so that the culture just has enough for its growth, avoiding waste. The objective of this work was to characterize the behavior of capacitive sensors of humidity to monitor the moisture in the soils. In first instance, it was appraised sensors with dielectric built of synthetic pomes stone (Rd = 0,4 and Rd = 0,8) and of soil samples (Rd = 0,8 and Rd = 1,0), being the Rd parameter a geometric factor that relates the distance between the capacitor plates with radius of the plates. For the calibration, the sensors were installed in PVC recipient of cylindrical shape, filled with soil. The set (sensor and soil) was humidified by capillary effect and submitted by a natural drying very slowly. The parameter readings were taken daily, which allowed obtain the curves relating the humidity percentage, expressed in terms of dry weight, with the output voltage fort the sensor. The experiments were performed in sand soil and in dark red latossolo. The obtained results allowed to infer that the behavior of the sensor has a specific feature for each type of soil, being, therefore, necessary to develop a own calibration curve for the sensor, when used in soil with specific characteristic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study has aimed to develop a method for simultaneous extraction and determination by liquid chromatography and mass spectrometry (LC-MS/MS) of glyphosate, aminomethylphosphonic acid (AMPA), shikimic acid, quinic acid, phenylalanine, tyrosine and tryptophan. For the joint analysis of these compounds the best conditions of ionization in mass spectrometry and for chromatographic separation of the compounds were selected. Calibration curves and linearity ranges were also determined for each compound. Different extraction systems of the compounds were tested from plant tissues collected from sugarcane (Saccharum officinarum) and eucalyptus (Eucalyptus urophylla platiphylla) plants two days after the glyphosate application at the dose of 720 g a.e. ha-1. The plant material was dried in a forced air circulation drying oven and in a lyophilizer, and subsequently the extractions with acidified water (pH 2.5), acetonitrile-water (50:50) [v/v] and methanol-water (50:50) [v/v] were tested. To verify the recovery of the compounds in the plant matrix with acidified water as an extracting solution, the samples were fortified with a solution containing the mixture of the different analytical standards present so that this one presented the same levels of 50 and 100 μg L-1 of each compound. All experiments were conducted with three replicates. The analytical method developed was efficient for compounds quantifications. The extraction from the samples dried in an oven and using acidified water allowed better extraction levels for all compounds. The recovery levels of the compounds in the fortified samples with known amounts of each compound for both plants samples were rather satisfactory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study we determined the efficacy of the measurement of fecal cortisol and androgen metabolite concentrations to monitor adrenal and testicular activity in the jaguar (Panthera onca). Three captive male jaguars were chemically restrained and electroejaculated once or twice within a period of two months. Fecal samples were collected daily for 5 days before and 5 days after the procedure and stored at -20ºC until extraction. Variations in the concentrations of cortisol and androgen metabolites before and after the procedure were determined by solid phase cortisol and testosterone radioimmunoassay and feces dry weight was determined by drying at 37ºC for 24 h under vacuum. On four occasions, fecal cortisol metabolite levels were elevated above baseline (307.8 ± 17.5 ng/g dry feces) in the first fecal sample collected after the procedure (100 to 350% above baseline). On one occasion, we did not detect any variation. Mean (± SEM) fecal androgen concentration did not change after chemical restraint and electroejaculation (before: 131.1 ± 26.7, after: 213.7 ± 43.6 ng/g dry feces). These data show that determination of fecal cortisol and androgen metabolites can be very useful for a noninvasive assessment of animal well-being and as a complement to behavioral, physiological, and pathological studies. It can also be useful for the study of the relationship between adrenal activity and reproductive performance in the jaguar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The yam (Discorea sp) is a tuber rich in carbohydrates, vitamins and mineral salts, besides several components that serve as raw material for medicines. It grows well in tropical and subtropical climates and develops well in zones with an annual pluvial precipitation of around 1300mm, and with cultural treatments, its productivity can exceed 30t/ha. When harvested, the tubers possess about 70% of moisture, and are merchandised "in natura", in the atmospheric temperature, which can cause its fast deterioration. The present work studied the drying of the yam in the form of slices of 1.0 and 2.5cm thickness, as well as in the form of fillets with 1.0 x 1.0 x 5.0cm, with the drying air varying from 40 to 70°C. The equating of the process was accomplished, allowing to simulate the drying as a function of the conditions of the drying air and of the initial and final moisture of the product. Also investigated was the expense of energy as function of the air temperature. The drying in the form of fillets, with the air in a temperature range between 45 and 50°C, was shown to be the most viable process when combining both the quality of the product and the expense of energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osmotic dehydration is considered to be a suitable preprocessing step to reduce the water content of foods. Such products can be dried further by conventional drying processes to lower their water activity and thus extend their shelf life. In this work, banana (Musa sapientum) fruits were initially treated by osmosis by varying several parameters of the processing conditions which included, besides the cutting format (longitudinal and round slices) of the fruit, temperature (28 and 49 ºC), syrup concentration (50, 60 and 67 ºBrix), treatment time (2, 4, 6, 10, 14, 16 and 18 hours), fruit and syrup ratio (1:1, 1:2, 1:3 and 1:4) and agitation effects. The best quality products were obtained by the use of the 67 ºBrix syrup, for 60 minutes of osmotic treatment, at 28 ºC, having a fruit and syrup ratio of 1:1 and agitation. The experimental data obtained on reduction in moisture content during the osmotic treatment were correlated with the experimental equation of M/Mo = Ae(-Kt), where A and K are the constants which represent the geometry and effective diffusivity of the drying process. This simplified mathematical model correlated well with the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to analyze the fatty acid composition and nutrient potential of flour made from tilapia heads, which are normally discarded during the filleting operation. Significant differences were found between the proximate composition (moisture, ash, protein and total lipids) of the in natura tilapia and the flour, due to the drying process. The predominant fatty acids in the heads (in natura and in the flour) were palmitic acid (1,999 mg.100 g-1 and 7,699 mg.100 g-1, respectively), oleic acid (3,128 mg.100 g-1 and 11,447 mg.100g-1, respectively), and linoleic acid (1,018 mg.100 g-1 and 3,784 mg.100 g-1, respectively). The results lead us to conclude that tilapia head flour offers high levels of protein (38.41%), total lipids (35.46%), and ash (minerals) (19.38%). The content of omega-3 (731 mg.100 g-1) were proved to be satisfactory. Also, n-6/n-3 ratio was 6.15 and PUFA/SFA ratio was 0.47, which are in agreement with the recommended levels. Thus, tilapia heads can be used as a low-cost raw material for food fit for human consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oil obtained from Brazilian roasted coffee by supercritical CO2 extraction shows considerable aromatic properties, mainly composed by five aromatic compounds, 2-methylpyrazine; 2-furfurylalcohol, 2,5-dimethylpyrazine; γ-butyrolactone and 2-furfurylacetate. Sensory analyses were used to verify the influence of a mixture of these important classes of aromatic coffee compounds (pyrazines, furans and lactones) and of the roasted coffee aromatic oil on the coffee aroma and flavour of black instant freeze and spray-dried coffee beverages. In the acceptance evaluation of the aroma, the samples prepared with freeze-dried instant coffee without the mixture of volatile compounds (sample 4) were not significantly different from the freeze-dried instant coffee in which the aromatic coffee oil was added (sample 5) and from the sample prepared with freeze-dried coffee in which the mixture of the five volatile was added (sample 3), coincidentally from the same drying process. Therefore, sample (3) did not differ from samples prepared with spray dried instant coffee without (sample 1) and to which (sample 2) the mixture of volatile was added. Therefore, with respect to this attribute, the addition of this mixture did not interfere in this drink acceptance. Taking into consideration the flavor, samples prepared with freeze-dried instant coffee in which the aromatic coffee oil was added (5) and the samples with (3) and without (4) the mixture of the five volatile was added did not differ significantly, however sample (4) did not differ from samples (1) and (2). Regarding this attribute, the addition of the aromatic oil of roasted coffee or a mixture of volatile in samples of freeze-dried instant coffee had a better acceptance than those dried by spray dryer (1) and (2). Thus, the enrichment of drinks with the aromatic oil of roasted coffee, or even with the mixture of the five components did not influence the consumer acceptance with respect to the aroma, but exerts influence with respect to flavour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the effect of the process variables of the air-drying of Sicilian lemon residues on some technological properties of the fibers produced was studied. The determination and modeling of desorption isotherms were used to establish the equilibrium moisture content at 60, 75, and 90 °C using the static method with 8 saturated salt solutions. The best fit was obtained with BET and GAB models. The drying process was conducted in a vertical tray dryer and delineated according to a central composite experimental design (2²) using the following as factors: air velocity (0.5, 0.75 and 1 m/s) and temperature (60, 75, and 90 °C), and it presented a good fit to the exponential model (R² > 99.9%). The experimental design responses evaluated were the technological properties of the fibers: water-holding, oil-holding, and swelling capacity. Since these properties were present in high levels, the lemon residues could be used to increase content of fibers in foods resulting in the addition of nutritional benefits for the consumers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper evaluated the influence of temperature and concentration of the sucrose syrup on the pre-osmotic dehydration of peaches. Physical (colour and texture) and chemical variables (soluble solid content; total sugar, reducing and non-reducing sugar contents; and titratable acidity) were investigated, as well as the osmotic dehydration parameters (loss of weight and water; solids incorporation). An experimental central composite design was employed varying the temperature (from 30 to 50 ºC) and concentration (from 45 to 65 ºBrix) and maintaining the syrup to fruit ratio (4:1), process time (4 hours), and format (slices). The degree of acceptance was used in the sensory analysis evaluating the following characteristics: appearance, taste, texture, colour, and overall quality using a hedonic scale. The results were modelled using the Statistica program (v. 6.0) and the Response Surface Methodology. The mathematical models of the following dimensionless variations yielded significant (p < 0.05) and predictive results: soluble solids content, total and non-reducing sugar contents, titratable acidity, colour parameter L*, and water loss. The models of the attributes colour and appearance yielded significant (p < 0.10) but not predictive results. Temperature was the prevalent effect in the models. The process conditions in the range from 50 to 54.1 ºC and from 45 to 65 ºBrix led to greater water losses and better sensory performances.