971 resultados para hydrolysis acidification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global climate change and ocean acidification pose a serious threat to marine life. Marine invertebrates are particularly susceptible to ocean acidification, especially highly calcareous taxa such as molluscs, echinoderms and corals. The largest of all bivalve molluscs, giant clams, are already threatened by a variety of local pressures, including overharvesting, and are in decline worldwide. Several giant clam species are listed as 'Vulnerable' on the IUCN Red List of Threatened Species and now climate change and ocean acidification pose an additional threat to their conservation. Unlike most other molluscs, giant clams are 'solar-powered' animals containing photosynthetic algal symbionts suggesting that light could influence the effects of ocean acidification on these vulnerable animals. In this study, juvenile fluted giant clams Tridacna squamosa were exposed to three levels of carbon dioxide (CO2) (control ~400, mid ~650 and high ~950 µatm) and light (photosynthetically active radiation 35, 65 and 304 µmol photons/m**2/s). Elevated CO2 projected for the end of this century (~650 and ~950 µatm) reduced giant clam survival and growth at mid-light levels. However, effects of CO2 on survival were absent at high-light, with 100% survival across all CO2 levels. Effects of CO2 on growth of surviving clams were lessened, but not removed, at high-light levels. Shell growth and total animal mass gain were still reduced at high-CO2. This study demonstrates the potential for light to alleviate effects of ocean acidification on survival and growth in a threatened calcareous marine invertebrate. Managing water quality (e.g. turbidity and sedimentation) in coastal areas to maintain water clarity may help ameliorate some negative effects of ocean acidification on giant clams and potentially other solar-powered calcifiers, such as hard corals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification caused by an increase in pCO2 is expected to drastically affect marine ecosystem composition, yet there is much uncertainty about the mechanisms through which ecosystems may be affected. Here we studied sea urchins that are common and important grazers in the Mediterranean (Paracentrotus lividus and Arbacia lixula). Our study included a natural CO2 seep plus reference sites in the Aegean Sea off Greece. The distribution of A. lixula was unaffected by the low pH environment, whereas densities of P. lividus were much reduced. There was skeletal degradation in both species living in acidified waters compared to reference sites and remarkable increases in skeletal manganese levels (P. lividus had a 541% increase, A. lixula a 243% increase), presumably due to changes in mineral crystalline structure. Levels of strontium and zinc were also altered. It is not yet known whether such dramatic changes in skeletal chemistry will affect coastal systems but our study reveals a mechanism that may alter inter-species interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although copepods have been considered tolerant against the direct influence of the ocean acidification (OA) projected for the end of the century, some recent studies have challenged this view. Here, we have examined the direct impact of short-term exposure to a pCO2/pH level relevant for the year 2100 (pHNBS, control: 8.18, low pH: 7.78), on the physiological performance of two representative marine copepods: the calanoid Acartia grani and the cyclopoid Oithona davisae. Adults of both species, from laboratory cultures, were preconditioned for four consecutive days in algal suspensions (Akashiwo sanguinea) prepared with filtered sea water pre-adjusted to the targeted pH values via CO2 bubbling. We measured the feeding and respiratory activity and reproductive output of those pre-conditioned females. The largely unaffected fatty acid composition of the prey offered between OA treatments and controls supports the absence in the study of indirect OA effects (i.e. changes of food nutritional quality). Our results show no direct effect of acidification on the vital rates examined in either copepod species. Our findings are compared with results from previous short- and long-term manipulative experiments on other copepod species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated acidification effects on two crustose coralline algal species common to Pacific coral reefs, Lithophyllum kotschyanum and Hydrolithon samoense. We used genetically homogeneous samples of both species to eliminate misidentification of species. The growth rates and percent calcification of the walls of the epithallial cells (thallus surface cells) of both species decreased with increasing pCO2. However, elevated pCO2 more strongly inhibited the growth of L. kotschyanum versus H. samoense. The trend of decreasing percent calcification of the cell wall did not differ between these species, although intercellular calcification of the epithallial cells in L. kotschyanum was apparently reduced at elevated pCO2, a result that might indicate that there are differences in the solubility or density of the calcite skeletons of these two species. These results can provide knowledge fundamental to future studies of the physiological and genetic mechanisms that underlie the response of crustose coralline algae to environmental stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification may benefit algae that are able to capitalize on increased carbon availability for photosynthesis, but it is expected to have adverse effects on calcified algae through dissolution. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as irradiance (light vs. shade) and nutrient levels (oligotrophic vs. eutrophic). Thus experiments are needed to evaluate interactive effects of combined stressors in the field. In this study, we investigated the physiological responses of macroalgae near a CO2 seep in oligotrophic waters off Vulcano (Italy). The algae were incubated in situ at 0.2 m depth using a combination of three mean CO2 levels (500, 700-800 and 1200 µatm CO2), two light levels (100 and 70% of surface irradiance) and two nutrient levels of N, P, and K (enriched vs. non-enriched treatments) in the non-calcified macroalga Cystoseira compressa (Phaeophyceae, Fucales) and calcified Padina pavonica (Phaeophyceae, Dictyotales). A suite of biochemical assays and in vivo chlorophyll a fluorescence parameters showed that elevated CO2 levels benefitted both of these algae, although their responses varied depending on light and nutrient availability. In C. compressa, elevated CO2 treatments resulted in higher carbon content and antioxidant activity in shaded conditions both with and without nutrient enrichment-they had more Chla, phenols and fucoxanthin with nutrient enrichment and higher quantum yield (Fv/Fm) and photosynthetic efficiency (alpha ETR) without nutrient enrichment. In P. pavonica, elevated CO2 treatments had higher carbon content, Fv/Fm, alpha ETR, and Chla regardless of nutrient levels-they had higher concentrations of phenolic compounds in nutrient enriched, fully-lit conditions and more antioxidants in shaded, nutrient enriched conditions. Nitrogen content increased significantly in fertilized treatments, confirming that these algae were nutrient limited in this oligotrophic part of the Mediterranean. Our findings strengthen evidence that brown algae can be expected to proliferate as the oceans acidify where physicochemical conditions, such as nutrient levels and light, permit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification is changing the marine environment, with potentially serious consequences for many organisms. Much of our understanding of ocean acidification effects comes from laboratory experiments, which demonstrate physiological responses over relatively short timescales. Observational studies and, more recently, experimental studies in natural systems suggest that ocean acidification will alter the structure of seaweed communities. Here, we provide a mechanistic understanding of altered competitive dynamics among a group of seaweeds, the crustose coralline algae (CCA). We compare CCA from historical experiments (1981-1997) with specimens from recent, identical experiments (2012) to describe morphological changes over this time period, which coincides with acidification of seawater in the Northeastern Pacific. Traditionally thick species decreased in thickness by a factor of 2.0-2.3, but did not experience a change in internal skeletal metrics. In contrast, traditionally thin species remained approximately the same thickness but reduced their total carbonate tissue by making thinner inter-filament cell walls. These changes represent alternative mechanisms for the reduction of calcium carbonate production in CCA and suggest energetic trade-offs related to the cost of building and maintaining a calcium carbonate skeleton as pH declines. Our classification of stress response by morphological type may be generalizable to CCA at other sites, as well as to other calcifying organisms with species-specific differences in morphological types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophytes growing in shallow coastal zones characterised by intense metabolic activity have the capacity to modify pH within their canopy and beyond. We observed diel pH changes in shallow (5-12 m) seagrass (Posidonia oceanica) meadows spanning 0.06 pH units in September to 0.24 units in June. The carbonate system (pH, DIC, and aragonite saturation state (omega Ar)) and O2 within the meadows displayed strong diel variability driven by primary productivity, and changes in chemistry were related to structural parameters of the meadow, in particular, the leaf surface area available for photosynthesis (LAI). LAI was positively correlated to mean, max and range pHNBS and max and range omega Ar. In June, vertical mixing (as Turbulent Kinetic Energy) influenced max and min omega Ar, while in September there was no effect of hydrodynamics on the carbonate system within the canopy. Max and range omega Ar within the meadow showed a positive trend with the calcium carbonate load of the leaves, pointing to a possible link between structural parameters, omega Ar and carbonate deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large percentage of CO2 emitted into the atmosphere is absorbed by the oceans, causing chemical changes in surface waters known as ocean acidification (OA). Despite the high interest and increased pace of OA research to understand the effects of OA on marine organisms, many ecologically important organisms remain unstudied. Calcidiscus is a heavily calcified coccolithophore genus that is widespread and genetically and morphologically diverse. It contributes substantially to global calcium carbonate production, organic carbon production, oceanic carbon burial, and ocean-atmosphere CO2 exchange. Despite the importance of this genus, relatively little work has examined its responses to OA. We examined changes in growth, morphology, and carbon allocation in multiple strains of Calcidiscus leptoporus in response to ocean acidification. We also, for the first time, examined the OA response of Calcidiscus quadriperforatus, a larger and more heavily calcified Calcidiscus congener. All Calcidiscus coccolithophores responded negatively to OA with impaired coccolith morphology and a decreased ratio of particulate inorganic to organic carbon (PIC:POC). However, strains responded variably; C. quadriperforatus showed the most sensitivity, while the most lightly calcified strain of C. leptoporus showed little response to OA. Our findings suggest that calcium carbonate production relative to organic carbon production by Calcidiscus coccolithophores may decrease in future oceans and that Calcidiscus distributions may shift if more resilient strains and species become dominant in assemblages. This study demonstrates that variable responses to OA may be strain or species specific in a way that is closely linked to physiological traits, such as cellular calcite quota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to test whether elevated pCO2 predicted for the year 2100 (85.1 Pa) affects bleaching in the coral Seriatopora caliendrum (Ehrenberg 1834) either independently or interactively with high temperature (30.5 °C). Response variables detected the sequence of events associated with the onset of bleaching: reduction in the photosynthetic performance of symbionts as measured by maximum photochemical efficiency (F v/F m) and effective photochemical efficiency (delta F/F m') of PSII, declines in net photosynthesis (P net) and photosynthetic efficiency (alpha), and finally, reduced chlorophyll a and symbiont concentrations. S. caliendrum was collected from Nanwan Bay, Taiwan, and subjected to combinations of temperature (27.7 vs. 30.5 °C) and pCO2 (45.1 vs. 85.1 Pa) for 14 days. High temperature reduced values of all dependent variables (i.e., bleaching occurred), but high pCO2 did not affect Symbiodinium photophysiology or productivity, and did not cause bleaching. These results suggest that short-term exposure to 81.5 Pa pCO2, alone and in combination with elevated temperature, does not cause or affect coral bleaching.