898 resultados para hybrid renewable energy systems
Resumo:
In many countries the use of renewable energy is increasing due to the introduction of new energy and environmental policies. Thus, the focus on the efficient integration of renewable energy into electric power systems is becoming extremely important. Several European countries have already achieved high penetration of wind based electricity generation and are gradually evolving towards intensive use of this generation technology. The introduction of wind based generation in power systems poses new challenges for the power system operators. This is mainly due to the variability and uncertainty in weather conditions and, consequently, in the wind based generation. In order to deal with this uncertainty and to improve the power system efficiency, adequate wind forecasting tools must be used. This paper proposes a data-mining-based methodology for very short-term wind forecasting, which is suitable to deal with large real databases. The paper includes a case study based on a real database regarding the last three years of wind speed, and results for wind speed forecasting at 5 minutes intervals.
Resumo:
The development of renewable energy sources and Distributed Generation (DG) of electricity is of main importance in the way towards a sustainable development. However, the management, in large scale, of these technologies is complicated because of the intermittency of primary resources (wind, sunshine, etc.) and small scale of some plants. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. VPPs can ensure a secure, environmentally friendly generation and optimal management of heat, electricity and cold as well as optimal operation and maintenance of electrical equipment, including the sale of electricity in the energy market. For attaining these goals, there are important issues to deal with, such as reserve management strategies, strategies for bids formulation, the producers’ remuneration, and the producers’ characterization for coalition formation. This chapter presents the most important concepts related with renewable-based generation integration in electricity markets, using VPP paradigm. The presented case studies make use of two main computer applications:ViProd and MASCEM. ViProd simulates VPP operation, including the management of plants in operation. MASCEM is a multi-agent based electricity market simulator that supports the inclusion of VPPs in the players set.
Resumo:
Sustainable development concerns made renewable energy sources to be increasingly used for electricity distributed generation. However, this is mainly due to incentives or mandatory targets determined by energy policies as in European Union. Assuring a sustainable future requires distributed generation to be able to participate in competitive electricity markets. To get more negotiation power in the market and to get advantages of scale economy, distributed generators can be aggregated giving place to a new concept: the Virtual Power Producer (VPP). VPPs are multi-technology and multisite heterogeneous entities that should adopt organization and management methodologies so that they can make distributed generation a really profitable activity, able to participate in the market. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, in the context of MASCEM, a multi-agent based eletricity market simulator.
Resumo:
Currently, power systems (PS) already accommodate a substantial penetration of distributed generation (DG) and operate in competitive environments. In the future, as the result of the liberalisation and political regulations, PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage and provide market agents to ensure a flexible and secure operation. This cannot be done with the traditional PS operational tools used today like the quite restricted information systems Supervisory Control and Data Acquisition (SCADA) [1]. The trend to use the local generation in the active operation of the power system requires new solutions for data management system. The relevant standards have been developed separately in the last few years so there is a need to unify them in order to receive a common and interoperable solution. For the distribution operation the CIM models described in the IEC 61968/70 are especially relevant. In Europe dispersed and renewable energy resources (D&RER) are mostly operated without remote control mechanisms and feed the maximal amount of available power into the grid. To improve the network operation performance the idea of virtual power plants (VPP) will become a reality. In the future power generation of D&RER will be scheduled with a high accuracy. In order to realize VPP decentralized energy management, communication facilities are needed that have standardized interfaces and protocols. IEC 61850 is suitable to serve as a general standard for all communication tasks in power systems [2]. The paper deals with international activities and experiences in the implementation of a new data management and communication concept in the distribution system. The difficulties in the coordination of the inconsistent developed in parallel communication and data management standards - are first addressed in the paper. The upcoming unification work taking into account the growing role of D&RER in the PS is shown. It is possible to overcome the lag in current practical experiences using new tools for creating and maintenance the CIM data and simulation of the IEC 61850 protocol – the prototype of which is presented in the paper –. The origin and the accuracy of the data requirements depend on the data use (e.g. operation or planning) so some remarks concerning the definition of the digital interface incorporated in the merging unit idea from the power utility point of view are presented in the paper too. To summarize some required future work has been identified.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica - ramo de Energia
Resumo:
Trabalho Final para obtenção do grau Mestre em Engenharia Electrotécnica
Resumo:
For the past years wireless sensor networks (WSNs) have been coined as one of the most promising technologies for supporting a wide range of applications. However, outside the research community, few are the people who know what they are and what they can offer. Even fewer are the ones that have seen these networks used in real world applications. The main obstacle for the proliferation of these networks is energy, or the lack of it. Even though renewable energy sources are always present in the networks environment, designing devices that can efficiently scavenge that energy in order to sustain the operation of these networks is still an open challenge. Energy scavenging, along with energy efficiency and energy conservation, are the current available means to sustain the operation of these networks, and can all be framed within the broader concept of “Energetic Sustainability”. A comprehensive study of the several issues related to the energetic sustainability of WSNs is presented in this thesis, with a special focus in today’s applicable energy harvesting techniques and devices, and in the energy consumption of commercially available WSN hardware platforms. This work allows the understanding of the different energy concepts involving WSNs and the evaluation of the presented energy harvesting techniques for sustaining wireless sensor nodes. This survey is supported by a novel experimental analysis of the energy consumption of the most widespread commercially available WSN hardware platforms.
Resumo:
A indústria da construção, nomeadamente no sector da edificação, baseia-se essencialmente em métodos de construção tradicional. Esta indústria é caracterizada pelo consumo excessivo de matérias-primas, de recursos energéticos não renováveis e pela elevada produção de resíduos. Esta realidade é de todo incompatível com os desígnios do desenvolvimento sustentável, nos quais se procura a conveniência harmoniosa entre as dimensões ambiental, social e económica. O desafio da sustentabilidade, colocado à actividade da construção, tem motivado abordagens distintas, não só por parte das várias especialidades da engenharia, como também da arquitectura. É nesta perspectiva, que o presente modelo pretende ser um contributo para uma abordagem inovadora, introduzindo linhas de intervenção e de orientação, para apoiar e estimular o desenvolvimento de soluções sustentáveis em edifícios habitacionais, em qualquer fase do ciclo de evolução de um projecto e das várias especialidades do mesmo. Assim, no sentido de optimizar os recursos envolvidos no projecto são expostas estratégias de intervenção, com os seguintes objectivos: optimização do potencial do local, preservação da identidade regional e cultural, minimização do consumo de energia, utilização de materiais e produtos de baixo impacto ambiental, redução do consumo de água, redução da produção de emissões, resíduos e outros poluentes, adequada qualidade do ambiente interior e optimização das fases de operação e manutenção. A ferramenta apresentada surge como um instrumento facilitador para a equipa de projectistas, e que se esta adaptada para o desenvolvimento de projectos de edifícios de habitação, dada a génese dos métodos utilizados. As soluções de sustentabilidade apresentadas neste manual emanam dos sistemas de certificação LíderA, LEED, BREEAM e SBToolpt. O modelo encontra-se estruturado, no que às fases de projecto diz respeito, de acordo com os requisitos expressos na Portaria 701-H/2008 de 29 de Julho, tendo sido igualmente seguido o descrito para os respectivos intervenientes.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Perfil Energia, Refrigeração e Climatização
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This paper presents a distributed predictive control methodology for indoor thermal comfort that optimizes the consumption of a limited shared energy resource using an integrated demand-side management approach that involves a power price auction and an appliance loads allocation scheme. The control objective for each subsystem (house or building) aims to minimize the energy cost while maintaining the indoor temperature inside comfort limits. In a distributed coordinated multi-agent ecosystem, each house or building control agent achieves its objectives while sharing, among them, the available energy through the introduction of particular coupling constraints in their underlying optimization problem. Coordination is maintained by a daily green energy auction bring in a demand-side management approach. Also the implemented distributed MPC algorithm is described and validated with simulation studies.
Resumo:
The present work aims to study the feasibility of deploying a farm of sea current turbines for electricity generation in Portugal. An approach to the tides, which are they, how they are formed, its prediction, is held. It is also conducted a study about the energy of sea currents and it is presented some technology about ocean currents too. A model of tidal height and velocity of the currents it is also developed. The energy produced by a hypothetical park, built in Sines (Portugal), is calculated and afterwards, an economical assessment is performed for two possible scenarios and a sensitivity analysis of NVP (Net Present Value) and LCOE (Levelized Cost of Energy) is figured. The conclusions about the feasibility of the projects are also presented. Despite being desired due to its predictability, this energy source is not yet economically viable as it is in an initial state of development. To push investment in this technology a feed-in tariff of, at least €200/MWh, should be considered.
Resumo:
Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.
Resumo:
This paper is concerned with direct or indirect lightning strokes on wind turbines, studying overvoltages and electromagnetic transients. As wind power generation undergoes rapid growth, lightning damages involving wind turbines have come to be regarded with more attention. With the aim of providing further insights into the lightning protection of wind turbines, describing the transient behavior in an accurate way, the restructured version (RV) of the electromagnetic transients program (EMTP) is used in this paper. A new case study is presented with two interconnected wind turbines, considering a direct lightning stroke to the blade or considering that lightning strikes the soil near a tower. Comprehensive computer simulations with EMTP-RV are presented and conclusions are duly drawn.
Resumo:
Most of small islands around the world today, are dependent on imported fossil fuels for the majority of their energy needs especially for transport activities and electricity production. The use of locally renewable energy resources and the implementation of energy efficiency measures could make a significant contribution to their economic development by reducing fossil fuel imports. An electrification of vehicles has been suggested as a way to both reduce pollutant emissions and increase security of supply of the transportation sector by reducing the dependence on oil products imports and facilitate the accommodation of renewable electricity generation, such as wind and, in the case of volcanic islands like Sao Miguel (Azores) of the geothermal energy whose penetration has been limited by the valley electricity consumption level. In this research, three scenarios of EV penetration were studied and it was verified that, for a 15% LD fleet replacement by EVs with 90% of all energy needs occurring during the night, the accommodation of 10 MW of new geothermal capacity becomes viable. Under this scenario, reductions of 8% in electricity costs, 14% in energy, 23% in fossil fuels use and CO2 emissions for the transportation and electricity production sectors could be expected.