912 resultados para human urine analysis
Resumo:
Human brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been established as scientific and diagnostic tools and their adoption is growing in popularity. Statistical methods, machine learning and data mining algorithms have successfully been adopted to extract predictive and descriptive models from neuroimage data. However, the knowledge discovery process typically requires also the adoption of pre-processing, post-processing and visualisation techniques in complex data workflows. Currently, a main problem for the integrated preprocessing and mining of MRI data is the lack of comprehensive platforms able to avoid the manual invocation of preprocessing and mining tools, that yields to an error-prone and inefficient process. In this work we present K-Surfer, a novel plug-in of the Konstanz Information Miner (KNIME) workbench, that automatizes the preprocessing of brain images and leverages the mining capabilities of KNIME in an integrated way. K-Surfer supports the importing, filtering, merging and pre-processing of neuroimage data from FreeSurfer, a tool for human brain MRI feature extraction and interpretation. K-Surfer automatizes the steps for importing FreeSurfer data, reducing time costs, eliminating human errors and enabling the design of complex analytics workflow for neuroimage data by leveraging the rich functionalities available in the KNIME workbench.
Resumo:
Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEIC293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the PI position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells.
Resumo:
In vitro studies have provided conflicting evidence of temperature changes in the tooth pulp chamber after low-level laser irradiation of the tooth surface. The present study was an in vitro evaluation of temperature increases in the human tooth pulp chamber after diode laser irradiation (GaAlAs, lambda = 808 nm) using different power densities. Twelve human teeth (three incisors, three canines, three premolars and three molars) were sectioned in the cervical third of the root and enlarged for the introduction of a thermocouple into the pulp chamber. The teeth were irradiated with 417 mW, 207 mW and 78 mW power outputs for 30 s on the vestibular surface approximately 2 mm from the cervical line of the crown. The highest average increase in temperature (5.6A degrees C) was observed in incisors irradiated with 417 mW. None of the teeth (incisors, canines, premolars or molars) irradiated with 207 mW showed temperature increases higher than 5.5A degrees C that could potentially be harmful to pulp tissue. Teeth irradiated with 78 mW showed lower temperature increases. The study showed that diode laser irradiation with a wavelength of 808 nm at 417 mW power output increased the pulp chamber temperature of certain groups of teeth, especially incisors and premolars, to critical threshold values for the dental pulp (5.5A degrees C). Thus, this study serves as a warning to clinicians that ""more"" is not necessarily ""better"".
Resumo:
The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er: YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 mu m, a discrete inflammatory response occurred in only one specimen with an RDT of 214 mu m. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 mu m), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 mu m). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.
Resumo:
Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress. Thus the parasite Fe-SODs have become attractive targets for novel drug development. Here we report the crystal structures of FeSODs from the trypanosomes T. brucei at 2.0 angstrom and T. cruzi at 1.9 angstrom resolution, and that from P. falciparum at a higher resolution (2.0 angstrom) to that previously reported. The homodimeric enzymes are compared to the related human MnSOD with particular attention to structural aspects which are relevant for drug design. Although the structures possess a very similar overall fold, differences between the enzymes at the entrance to the channel which leads to the active site could be identified. These lead to a slightly broader and more positively charged cavity in the parasite enzymes. Furthermore, a statistical coupling analysis (SCA) for the whole Fe/MnSOD family reveals different patterns of residue coupling for Mn and Fe SODs, as well as for the dimeric and tetrameric states. In both cases, the statistically coupled residues lie adjacent to the conserved core surrounding the metal center and may be expected to be responsible for its fine tuning, leading to metal ion specificity.
Resumo:
Background: JC virus (JCV), the causative agent of progressive multifocal leukoencephalopathy (PML), is classified in 8 different genotypes. Previous reports have suggested a positive association between specific genotypes and PML. Objective: To compare genotypes and adaptive mutations of JCV strains from Brazilian AIDS patients with and without PML. Study design: The VP1 region of JCV was amplified by polymerase chain reaction from cerebrospinal fluid samples from 51 patients with PML and from urine samples of 47 patients with AIDS without central nervous system disease. Genotyping was done by phylogenetic analysis. Amino acid replacement and selection pressures were also investigated. Results: JCV genotype frequency distributions showed that genotypes 2 (32.7%), 1 (26.5%) and 3 (23.5%) were the most prevalent. Genotype 1 had a positive association (p < 0.0001) and genotype 3 showed an inverse association (p < 0.001) with PML. A previously undescribed point mutation at residue 91 (L/I or L/V) and (L/P), non-genotype-associated, was found in 5/49 (10.2%) and 2/47 (4.3%) JCV sequences from PML and non-PML patients, respectively. This mutation was under positive selection only in PML patients. A previously described substitution of T-A in position 128 showed a significant difference between PML and non-PML cases (70% versus 16%, respectively, p < 0.0005). Conclusion: In Brazilian patients with AIDS, JCV genotype 1 showed a strong association with PML (p < 0.0001) and JCV genotype 3 showed an inverse association with PML. The possible association of aminoacids substitution in residues 91 and 128 with PML in patients with AIDS must be further investigated. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Human papillomavirus is a DNA virus that includes 118 genotypes. HPV16 is responsible for 80% of cervical cancer in women. Men are important reservoirs and major transmitters of HPV to their partners. The aim of this study was to detect HPV DNA and to determine the prevalence of HPV types 6, 11, 16, and 18 in urine samples of men infected with HIV-1. This study included 223 patients infected with HIV-1 from the Center of Reference on HIV/AIDS (CRT-SP) and an outpatient clinic of HIV. Urine samples were collected and after DNA extraction real-time PCR was performed for detection of HPV DNA. Positive samples were then tested by conventional PCR using type-specific primers for the four HPV types. A total of 223 men infected with HIV-1 were tested, 81% of whom were on HAART. Four (5.8%) were positive for HPV6, 18 (26.1%) were positive for HPV11, 22 (31.9%) were positive for HPV16 and five (7.2%) were positive for HPV18 by conventional PCR. Twenty (29%) patients had other HPV types and five patients (1.5%) had multiple types. The mean T CD4+cells count was 517 and 441 cells/mm(3) (P=0.30), in HPV negative and positive men, respectively. The HIV viral load was higher in the HPV negative group than for in the men with HPV (P=0.0002). A 30.9% prevalence of HPV was found in asymptomatic urine samples of men infected with HIV-1. This study suggests that urine may be a useful specimen for HPV screening. J. Med. Virol 81:2007-2011, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
In metazoans, bone morphogenetic proteins (BMPS) direct a myriad of developmental and adult homeostatic evens through their heterotetrameric type I and type II receptor complexes. We examined 3 existing and 12 newly generated mutations in the Drosophila type I receptor gene, saxophone (sax), the ortholog of the human Activin Receptor-Like. Kinasel and -2 (ALK1/ACVR1 and ALK2/ACVR1) genes. Our genetic analyses identified two distinct classes of sax alleles. The first class consists of homozygous viable gain-of-function (GOF) alleles that exhibit (1) synthetic lethality in combination with mutations in BMP pathway components, and (2) significant maternal effect lethality that can be rescued by an increased dosage of the BMP encoding gene, dpp(+). In contrast, the second class consists of alleles that are recessive lethal and do not exhibit lethality in combination with mutations in other BMP pathway components. The alleles in this second class are clearly loss-of-function (LOF) with both complete and partial loss-of-function mutations represented. We find that one allele in the second class of recessive lethals exhibits dominant-negative behavior, albeit distinct from the GOF activity of the first class of viable alleles. On the basis of the fact that the first class of viable alleles can be reverted to lethality and on our ability to independently generate recessive lethal sat mutations, our analysis demonstrates that sax is an essential gene. Consistent with this conclusion, we find that a normal sax transcript is produced by sax(P), a viable allele previously reported to be mill, and that this allele can be reverted to lethality. Interestingly, we determine that two mutations in the first: class of sax alleles show the same amino acid substitutions as mutations in the human receptors ALK1/ACVR1-1 and ACVR1/ALK2, responsible for cases of hereditary hemorrhagic telangiectasia type 2 (HHT2) and fibrodysplasia ossificans progressiva (FOP), respectively. Finally, the data presented here identify different functional requirements for the Sax receptor, support the proposal that Sax participates in a heteromeric receptor complex, and provide a mechanistic framework for future investigations into disease states that arise from defects in BMP/TGF-beta signaling.
Resumo:
Shwachman-Bodian-Diamond syndrome is an autosomal recessive genetic syndrome with pleiotropic phenotypes, including pancreatic deficiencies, bone marrow dysfunctions with increased risk of myelodysplasia or leukemia, and skeletal abnormalities. This syndrome has been associated with mutations in the SBDS gene, which encodes a conserved protein showing orthologs in Archaea and eukaryotes. The Shwachman-Bodian-Diamond syndrome pleiotropic phenotypes may be an indication of different cell type requirements for a fully functional SBDS protein. RNA-binding activity has been predicted for archaeal and yeast SBDS orthologs, with the latter also being implicated in ribosome biogenesis. However, full-length SBDS orthologs function in a species-specific manner, indicating that the knowledge obtained from model systems may be of limited use in understanding major unresolved issues regarding SBDS function, namely, the effect of mutations in human SBDS on its biochemical function and the specificity of RNA interaction. We determined the solution structure and backbone dynamics of the human SBDS protein and describe its RNA binding site using NMR spectroscopy. Similarly to the crystal structures of Archaea, the overall structure of human SBDS comprises three well-folded domains. However, significant conformational exchange was observed in NMR dynamics experiments for the flexible linker between the N-terminal domain and the central domain, and these experiments also reflect the relative motions of the domains. RNA titrations monitored by heteronuclear correlation experiments and chemical shift mapping analysis identified a classic RNA binding site at the N-terminal FYSH (fungal, Yhr087wp, Shwachman) domain that concentrates most of the mutations described for the human SBDS. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The prefrontal cortex executes important functions such as differentiation of conflicting thoughts, correct social behavior and personality expression, and is directly implicated in different neurodegenerative diseases. We performed a shotgun proteome analysis that included IEF fractionation, RP-LC, and MALDI-TOF/TOF mass spectrometric analysis of tryptic digests from a pool of seven human dorsolateral prefrontal cortex protein extracts. In this report, we present a catalog of 387 proteins expressed in these samples, identified by two or more peptides and high confidence search scores. These proteins are involved in different biological processes such as cell growth and/or maintenance, metabolism/energy pathways, cell communication/signal trarisduction, protein metabolism, transport, regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism, and immune response. This analysis contributes to the knowledge of the human brain proteome by adding sample diversity and protein expression data from an alternative technical approach. It will also aid comparative studies of different brain areas and medical conditions, with future applications in basic and clinical research.