926 resultados para high pressure homogenization
Resumo:
Gas sorption by coal is closely related to its physical and chemical properties, which are, in turn, governed by coal type and rank. The role of coal type (sensu maceral composition) is not fully established but it is clear that coal type may affect both adsorption capacity and desorption rate. Adsorption capacity is closely related to micropore (pores <2 nm) development, which is rank and maceral dependent. Adsorption isotherms indicate that in most cases bright (vitrinite-rich) coals have a greater adsorption capacity than their dull (often inertinite-rich) equivalents. However, no differences, or even the opposing trend, may be observed in relation to coal type. Desorption rate investigations have been performed using selected bright and dull coal samples in a high pressure microbalance. Interpretation of results using unipore spherical and bidisperse pore models indicate the importance of the pore structure. Bright, vitrinite-rich coals usually have the slowest desorption rates which is associated with their highly microporous structure. However, rapid desorption in bright coals may be related to development of extensive, unmineralised fracture systems. Both macro-and micro-pore systems are implicated in the more rapidly desorbing dull coals. Some dull, inertinite-rich coals may rapidly desorb due to a predominance of large, open cell lumina. Mineral matter is essentially nonadsorbent to coal gases and acts as a simple diluent. However, mineral-rich coals may be associated with more rapid desorption. Coal rank and type (maceral composition) per se do not appear to be the critical factors in controlling gas sorption, but rather the influence they exert over pore structure development. (C) 1998 Elsevier Science B.V.
Resumo:
Adsorption of binary hydrocarbon mixtures involving methane in carbon slit pores is theoretically studied here from the viewpoints of separation and of the effect of impurities on methane storage. It is seen that even small amounts of ethane, propane, or butane can significantly reduce the methane capacity of carbons. Optimal pore sizes and pressures, depending on impurity concentration, are noted in the present work, suggesting that careful adsorbent and process design can lead to enhanced separation. These results are consistent with earlier literature studies for the infinite dilution limit. For methane storage applications a carbon micropore width of 11.4 Angstrom (based on distance between centers of carbon atoms on opposing walls) is found to be the most suitable from the point of view of lower impurity uptake during high-pressure adsorption and greater impurity retention during low-pressure delivery. The results also theoretically confirm unusual recently reported observations of enhanced methane adsorption in the presence of a small amount of heavier hydrocarbon impurity.
Resumo:
A method by which to overcome the clinical symptoms of atherosclerosis is the insertion of a graft to bypass an artery blocked or impeded by plaque. However, there may be insufficient autologous mammary artery for multiple or repeat bypass, saphenous vein may have varicose degenerative alterations that can lead to aneurysm in high-pressure sites, and small-caliber synthetic grafts are prone to thrombus induction and occlusion. Therefore, the aim of the present study was to develop an artificial blood conduit of any required length and diameter from the cells of the host for autologous transplantation. Silastic tubing, of variable length and diameter, was inserted into the peritoneal cavity of rats or rabbits. By 2 weeks, it had become covered by several layers of myofibroblasts, collagen matrix, and a single layer of mesothelium. The Silastic tubing was removed from the harvested implants, and the tube of living tissue was everted such that it now resembled a blood vessel with an inner lining of nonthrombotic mesothelial cells (the intima), with a media of smooth muscle-like cells (myofibroblasts), collagen, and elastin, and with an outer collagenous adventitia. The tube of tissue (10 to 20 mm long) was successfully grafted by end-to-end anastomoses into the severed carotid artery or abdominal aorta of the same animal in which they were grown. The transplant remained patent for at least 4 months and developed structures resembling elastic lamellae. The myofibroblasts gained a higher volume fraction of myofilaments and became responsive to contractile agonists, similar to the vessel into which they had been grafted. It is suggested that these nonthrombogenic tubes of living tissue, grown in the peritoneal cavity of the host, may be developed as autologous coronary artery bypass grafts or as arteriovenous access fistulae for hemodialysis patients.
Resumo:
The crystal structures of the Tutton salts (NH4)(2)[Cu(H2O)(6)](SO4)(2), diammonium hexaaquacopper disulfate, formed with normal water and isotopically substituted (H2O)-O-18, have been determined by X-ray diffraction at 9.5 K and are very similar, with Cu-O(7) the longest of the Cu-O bonds of the Jahn-Teller distorted octahedral [Cu(H2O)(6)](2+) complex. It is known that structural differences accompany deuteration of (NH4)(2)[Cu(H2O)(6)](SO4)(2), the most dramatic of which is a switch to Cu-O(8) as the longest such bond. The present result suggests that the structural differences are associated with hydrogen-bonding effects rather than with increased mass of the water ligands affecting the Jahn-Teller coupling. The Jahn-Teller distortions and hydrogen-bonding contacts in the compounds are compared with those reported for other Tutton salts at ambient and high pressure.
Resumo:
This work presents new Structural data from a high-pressure/low-temperature (HP/LT) metamorphic terrane exposed on the islands of Syros and Sifnos (Cyclades, Greece). The structure and the metamorphism of a relatively coherent HP/LT rock section were studied in order to elucidate how strain was accommodated at deep crustal levels during the formation and exhumation of HP/LT rocks. At least three deformation phases associated with eclogite- and blueschist-facies conditions (P = 8-15 kbar; T = 400-550 degreesC) were recognised. The earliest deformation fabric (S1), preserved as inclusion trails within garnet porphyroblasts, is aligned to define a sub-vertical schistosity (at present orientation), which is frequently orthogonal to the flat matrix schistosity (S2), and may indicate that deep crustal thickening involved upright folding. The currently dominant fabric in the HP rock section, S2, is Usually moderately dipping and locally contains NW-trending glaucophane lineations, symmetric pressure-shadows and eclogitic boudins. The symmetric structures associated with this fabric seem to indicate coaxial vertical thinning, although the existence of non-coaxial structures out of the study area cannot be excluded. Glaucophane-bearing shear bands (S3), with top-to-NW sense of shearing, locally crosscut the earlier structures. The latest recognised fabric (D4) is scarce and often absent within the HP rocks. It is associated with top-to-NE kinematic criteria that formed at greenschist-facies conditions (P = 4-7 kbar; T = 400-450 degreesC). Based on these observations, it is suggested that partitioning of strain occurred at different crustal levels and at different times. Deep crustal deformation was governed by thickening via upright folding followed by coaxial vertical thinning, whereas non-coaxial shearing occurred when the rocks were already exhumed to relatively shallow crustal levels. The earliest fabrics (D1 to D3) pertain to Alpine orogenesis and possibly to syn-orogenic extension, whereas the latest correspond to whole-crust back-are extension. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, we propose a new nonlocal density functional theory characterization procedure, the finite wall thickness model, for nanoporous carbons, whereby heterogeneity of pore size and pore walls in the carbon is probed simultaneously. We determine the pore size distributions and pore wall thickness distributions of several commercial activated carbons and coal chars, with good correspondence with X-ray diffraction. It is shown that the conventional infinite wall thickness approach overestimates the pore size slightly. Pore-pore correlation has been shown to have a negligible effect on prediction of pore size and pore wall thickness distributions for small molecules such as argon used in characterization. By utilizing the structural parameters (pore size and pore wall thickness distribution) in the generalized adsorption isotherm (GAI) we are able to predict adsorption uptake of supercritical gases in BPL and Norit RI Extra carbons, in excellent agreement with experimental adsorption uptake data up to 60 MPa. The method offers a useful technique for probing features of the solid skeleton, hitherto studied by crystallographic methods.
Resumo:
Despite extensive research in the last 150 years, the regional tectonic reconstruction of the Western Alps has remained controversial. The curved orogenic belt consists of several ribbon-like continental terranes (Sesia/Austroalpine, Internal Crystalline Massifs, Brianconnais), which are separated by two or more ophiolitic sutures (Piemonte, Valais, Antrona?, Lanzo/ Canavese?). High-pressure (HP) metamorphism of each terrane occurred during distinct orogenic episodes: at similar to65 Ma in the Sesia/Austroalpine, at similar to45 Ma in the Piemonte zone and at similar to35 Ma in the Internal Crystalline Massifs. It is suggested that these events reflect individual accretionary episodes, which together with kinematic indicators and the speed and direction of plate motions, provide constraints for the discussed reconstruction model. The model involves a prolonged orogenic history that took place during relative convergence of Europe and Adria (here considered as a promontory of the African plate). The first accretionary event involved the Sesia/Austroalpine terrane. Final closure of the Piemonte Ocean occurred during the Eocene (similar to45 Ma) and involved ultra-high-pressure (UHP) metamorphism of the Piemonte oceanic crust. Incorporation of the Brianconnais terrane in the accretionary wedge occurred thereafter, possibly during or after subduction of the Valais Ocean in the late Eocene (45-35 Ma). This subduction was terminated at ca. 35 Ma, when the Internal Crystalline Massifs (i.e. the assumed internal parts of the Brianconnais terrane) were buried into great depths and underwent HP and UHP metamorphism. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Al-3-11% Si alloys have been high-pressure die-cast and characterized microstructurally. Alstruc was used to calculate the solidification characteristics and fraction of eutectic. Defect bands were observed at all Si contents, although their constitution, position and distinctiveness were a function of Si content. The defect bands contain a higher fraction Al-Si eutectic than the surroundings in all alloys, and porosity was additionally found in the band in AlSi3. With decreasing Si content, the defect bands formed closer to the casting surface, became more prevalent and also the width of the bands decreased. These differences are discussed by considering the effect of Si content on the distribution of solid in the mushy wall layers and on the feeding potentials of the alloys. The observations are consistent with the mechanism proposed by Gourlay et al. in which bands form due to deformation within the solidifying mushy wall layers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Several peptides sharing high sequence homology with lactoferricin B (Lf-cin B) were generated from bovine lactoferrin (Lf) with recombinant chymosin. Two peptides were copurified. one identical to Lf-cin B and another differing from Lf-cin B by the inclusion of a C-terminal alanine (lactoferricin). Two other peptides were copurified from chymosin-hydrolyzed Lf. one differing from Lf-cin B by the inclusion of C-terminal alanyl-leucine and the other being a heterodimer linked by a disulfide bond, These peptides were isolated in a single step from chymosin-hydrolyzed Lf by membrane ton-exchange chromatography and were purified by reverse-phase high-pressure liquid chromatography (HPLC), They were characterized by. N-terminal Edman sequencing, mass spectrometry, and antibacterial activity determination, Pure lactoferricin, prepared from pepsin-hydrolyzed Lf, was purified by standard chromatography techniques, This peptide was analyzed against a number of gram-positive and gram-negative bacteria before and after reduction of its disulfide bond or cleavage after its single methionine residue and was found to inhibit the growth of all the test bacteria at a concentration of 8 mu M or less, Subfragments of lactoferricin were isolated from reduced and cleaved peptide by reverse-phase HPLC, Subfragment 1 (residues I to 10) was active against most of the test microorganisms at concentrations of 10 to 50 mu M. Subfragment 2 (residues 11 to 26) was active against only a few microorganisms at concentrations up to 100 mu M. These antibacterial studies indicate that the activity of lactoferricin Is mainly, but not wholly, due to its N-terminal region.
Resumo:
We have established a surviving model of isolated limb perfusion using xenografts of the human melanoma cell line MM 96L injected subcutaneously into the hindlimb of a nude rat, The femoral artery and vein were cannulated via the left renal artery and vein and the hind limb was isolated using tourniquets. The limb was perfused with Krebs Heinseleit buffer at 37 degrees C containing 4.7% bovine serum albumin at a constant flow rate of 4 mi per min for 30-60 min with 100% survival of the animals, Tumour vascularization and blood flow were demonstrated using vascular casts and [Cr-51]-microspheres. Following the addition of melphalan (15 or 100 mu g/ml), drug concentrations in the perfusate, tissues and systemic circulation were determined using high pressure liquid chromatography (HPLC), Systemic leakage, assessed using [I-125]albumin and melphalan and detected by a gamma-counter and HPLC respectively, was <0.5%. The melphalan concentration and tissue flow rate in the tumour deposits were 40 and 30% respectively, when compared with the surrounding subcutaneous tissue, At a dose of 15 mu g/ml, melphalan caused a reduction in tumour growth after 60 min perfusion, and a significant reduction in tumour size was seen when the melphalan dose was 100 mu g/ml. The surviving nude rat model of isolated limb perfusion for recurrent melanoma will allow examination of optimal perfusion conditions, along with the pharmacokinetics, pharmacodynamics and efficacy of melphalan and other drugs.
Resumo:
We have developed a sensitive resonant four-wave mixing technique based on two-photon parametric four-wave mixing with the addition of a phase matched ''seeder'' field. Generation of the seeder field via the same four-wave mixing process in a high pressure cell enables automatic phase matching to be achieved in a low pressure sample cell. This arrangement facilitates sensitive detection of complex molecular spectra by simply tuning the pump laser. We demonstrate the technique with the detection of nitric oxide down to concentrations more than 4 orders of magnitude below the capability of parametric four-wave mixing alone, with an estimated detection threshold of 10(12) molecules/cm(3).
Resumo:
Background. This study aimed to evaluate manometric parameters that may explain improvement in anal incontinence using a silicone bulking agent. Methods. Incontinent patients having internal sphincter defects were prospectively selected and injected with a silicone bulking agent. Manometry and endoanal ultrasound were performed before and 3 months after injections. Twenty continent healthy volunteers were used only for manometric comparison. Results. Thirty-five patients (28 females; mean age 60.3 years) and 20 controls entered this study. Patients had lower resting and squeeze pressures compared with controls (P<.05). Length of the high-pressure zone increased from 1 to 1.7 cm postinjection (P=.002). Asymmetry index showed a significant change postinjection (P<.001). Conclusion. Despite considerable clinical improvement, no significant increase in manometric pressures was noted posttreatment. There was significant improvement in both high-pressure zone and asymmetry index, and these findings may explain the mechanism of action of the bulking agent injected.
Resumo:
To evaluate the effects of different mechanical ventilation (MV) strategies on the mucociliary system. Experimental study. Twenty-seven male New Zealand rabbits. After anesthesia, animals were tracheotomized and ventilated with standard ventilation [tidal volume (Vt) 8 ml/kg, positive end expiratory pressure (PEEP) 5 cmH(2)O, flow 3 L/min, FiO(2) 0.4] for 30 min. Next, animals were randomized into three groups and ventilated for 3 h with low volume (LV): Vt 8 ml/kg, PEEP 5 cmH(2)O, flow 3 L/min (n = 6); high volume (HV): Vt 16 ml/kg, PEEP 5 cmH(2)O, flow 5 L/min (n = 7); or high pressure (HP): Ppeak 30 cmH(2)O, PEEP 12 cmH(2)O (n = 8). Six animals (controls) were ventilated for 10 min with standard ventilation. Vital signals, blood lactate, and respiratory system mechanics were verified. Tracheal tissue was collected before and after MV. Lung and tracheal tissue sections were stained to analyze inflammation and mucosubstances by the point-counting method. Electron microscopy verified tracheal cell ultrastructure. In situ tracheal ciliary beating frequency (CBF), determined using a videoscopic technique, and tracheal mucociliary transport (TMCT), assessed by stereoscopic microscope, were evaluated before and after MV. Respiratory compliance decreased in the HP group. The HV and HP groups showed higher lactate levels after MV. Macroscopy showed areas of atelectasis and congestion on HV and HP lungs. Lung inflammatory infiltrate increased in all ventilated groups. Compared to the control, ventilated animals also showed a reduction of total and acid mucus on tracheal epithelium. Under electron microscopy, injury was observed in the ciliated cells of the HP group. CBF decreased significantly after MV only in the HP group. TMCT did not change significantly in the ventilated groups. Different MV strategies induce not only distal lung alterations but also morphological and physiological tracheal alterations leading to mucociliary system dysfunction.
Resumo:
Heart disease (HD) can stress the alveolar blood-gas barrier, resulting in parenchymal inflammation and remodeling. Patients with HD may therefore display any of the symptoms commonly attributed to primary pulmonary disease, although tissue documentation of corresponding changes through surgical lung biopsy (SLB) is rarely done. Intent on exploring the basis of HD-related alveolar-capillary barrier dysfunction, a retrospective analysis of SLB histopathology was conducted in patients with clinically diagnosed HD, diffuse pulmonary infiltrates, and no evidence of primary pulmonary disease. Patients eligible for the study had a clinical diagnosis of heart disease, acute or chronic, and presented with diffuse infiltrates on chest X-ray. All qualified subjects (N = 23) who underwent diagnostic SLB between January 1982 and December 2005 were subsequently examined. Specific biopsy parameters investigated included demonstrable edema, siderophage influx, hemorrhage, venous and lymphatic ectasia, vascular sclerosis, capillary congestion, and fibroblast proliferation. Based on observed alveolar-capillary barrier (ACB) alterations, three main morphologic groups emerged: one group (6 patients) with alveolar edema; a second group (11 patients) characterized by pulmonary congestion; and a final group (6 patients) showing microscopic foci of acute ACB lung injury. Alveolar-capillary stress due to acute high-pressure or volume overload often manifests as diffuse pulmonary infiltrates with variable but generally predictable histopathology. In patients with biopsy-proven alveolar edema, pulmonary congestion, or acute microscopic lung injury, the clinician must be alert for the possibility of primary heart disease, particularly if the patient is elderly or when a history of myocardial, valvular, or coronary vascular disease exists.
Resumo:
There seems to be controversy on the anorectal sphincter presentation and anatomical division, as well as on its functional representation. Evaluation of the anorectal sphincter musculature has been achieved through several methods, including anorectal manometry and computerized tomography, but to date there is no experimental model allowing a detailed manometric study of this muscle complex. In this work, we have developed such a model, which should enable the manometric and radiographic study of the anatomical features and functional mechanisms of sphincteric injuries, as well as the assessment of drug effects on the anorectal musculature upon incontinence and constipation. Twenty-two piglets (aged 25-30 days, weighing 5-7 kg) were studied by anorectal manometry (rectoanal inhibitory reflex and vector volume) and computerized tomography (anorectal angle and anal canal length). The data obtained for the rectoanal inhibitory reflex, represented here as the average and standard deviation, were the following: relaxation duration = 14.75 +/- 3.62 s, sphincter basal pressure = 41.58 +/- 8.20 mmHg, relaxation index = 87.26 +/- 11.52%, speed of relaxation = 5.90 +/- 2.10 mm/s, and speed of relaxation recovery = 4.03 +/- 1.78 mm/s. As for the vector volume, results were as follows: vector volume = 2692.32 +/- 1298.12 mmHg(2) cm, sphincter length = 11.82 +/- 2.74 mm, high pressure zone length = 5.09 +/- 1.34 mm, maximum pressure = 61.50 +/- 20.58 mmHg, and asymmetry index = 43.50 +/- 10.03%. Radiographic evaluation led to the following results: anal canal length = 9.61 +/- 2.14 mm and anorectal angle = 137.91 +/- 7.75 degrees. The experimental model designed here allows both anorectal manometry and computerized tomography to be carried out in the same way it is performed in human beings, as long as animal sedation is strictly controlled.