943 resultados para heterocyclic compound


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cluster expansion of [Os3H2(CO)10] with [SnR2][R = CH(SiMe3)2] take place in high yield to give [Os3SnH2(CO)10R2], the first closed triosmium–main-group metal cluster to be structurally characterized; a novel feature is the presence of a hydrogen atom bridging the tin atom and one of the osmium atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, the first homoleptic Group 6A metal alkenyl, has been prepared from CrCl3·3(thf), and its properties, including X-ray crystal structure determination, are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been postulated that the R- and S-equol enantiomers have different biological properties given their different binding affinities for the estrogen receptor. S-(-)equol is produced via the bacterial conversion of the soy isoflavone daidzein in the gut. We have compared the biological effects of purified S-equol to that of racemic (R and S) equol on breast and prostate cancer cells of varying receptor status in vitro. Both racemic and S-equol inhibited the growth of the breast cancer cell line MDA-MB-231 (> or = 10 microM) and the prostate cancer cell lines LNCaP (> or = 5 microM) and LAPC-4 (> or = 2.5 microM). The compounds also showed equipotent effects in inhibiting the invasion of MDA-MB-231 and PC-3 cancer cells through matrigel. S-equol (1, 10, 30 microM) was unable to prevent DNA damage in MCF-7 or MCF-10A breast cells following exposure to 2-hydroxy-4-nonenal, menadione, or benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide. In contrast, racemic equol (10, 30 microM) prevented DNA damage in MCF-10A cells following exposure to 2-hydroxy-4-nonenal or menadione. These findings suggest that racemic equol has strong antigenotoxic activity in contrast to the purified S-equol enantiomer implicating the R-, rather than the S-enantiomer as being responsible for the antioxidant effects of equol, a finding that may have implications for the in vivo chemoprotective properties of equol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red meat consumption causes a dose-dependent increase in fecal apparent total N-nitroso compounds (ATNC). The genotoxic effects of these ATNCs were investigated using two different Comet assay protocols to determine the genotoxicity of fecal water samples. Fecal water samples were obtained from two studies of a total of 21 individuals fed diets containing different amounts of red meat, protein, heme, and iron. The first protocol incubated the samples with HT-29 cells for 5 min at 4 degrees C, whereas the second protocol used a longer exposure time of 30 min and a higher incubation temperature of 37 degrees C. DNA strand breaks were quantified by the tail moment (DNA in the comet tail multiplied by the comet tail length). The results of the two Comet assay protocols were significantly correlated (r = 0.35, P = 0.003), however, only the second protocol resulted in detectable levels of DNA damage. Inter-individual effects were variable and there was no effect on fecal water genotoxicity by diet (P > 0.20), mean transit time (P = 0.588), or weight (P = 0.705). However, there was a highly significant effect of age (P = 0.019). There was no significant correlation between concentrations of ATNCs in fecal homogenates and fecal water genotoxicity (r = 0.04, P = 0.74). ATNC levels were lower in fecal water samples (272 microg/kg) compared to that of fecal homogenate samples (895 microg/kg) (P < 0.0001). Failure to find dietary effects on fecal water genotoxicity may therefore be attributed to individual variability and low levels of ATNCs in fecal water samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The removal of the most long-lived radiotoxic elements from used nuclear fuel, minor actinides, is foreseen as an essential step toward increasing the public acceptance of nuclear energy as a key component of a low-carbon energy future. Once removed from the remaining used fuel, these elements can be used as fuel in their own right in fast reactors or converted into shorter-lived or stable elements by transmutation prior to geological disposal. The SANEX process is proposed to carry out this selective separation by solvent extraction. Recent efforts to develop reagents capable of separating the radioactive minor actinides from lanthanides as part of a future strategy for the management and reprocessing of used nuclear fuel are reviewed. The current strategies for the reprocessing of PUREX raffinate are summarized, and some guiding principles for the design of actinide-selective reagents are defined. The development and testing of different classes of solvent extraction reagent are then summarized, covering some of the earliest ligand designs right through to the current reagents of choice, bis(1,2,4-triazine) ligands. Finally, we summarize research aimed at developing a fundamental understanding of the underlying reasons for the excellent extraction capabilities and high actinide/lanthanide selectivities shown by this class of ligands and our recent efforts to immobilize these reagents onto solid phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of [Cu(pic)2]·2H2O (where pic stands for 2-picolinato) with 2-({[2-(dimethylamino)ethyl]amino}methyl)phenol (HL1) produces the square-pyramidal complex [CuL1(pic)] (1), which crystallizes as a conglomerate (namely a mixture of optically pure crystals) in the Sohncke space group P212121. The use of the methylated ligand at the benzylic position, i.e. (±)-2-(1-{[2-(dimethylamino)ethyl]amino}ethyl)phenol (HL2), yields the analogous five-coordinate complex [CuL2(pic)] (2) that crystallizes as a true racemate (namely the crystals contain both enantiomers) in the centrosymmetric space group P21/c. Density functional theory (DFT) calculations indicate that the presence of the methyl group indeed leads to a distinct crystallization behaviour, not only by intramolecular steric effects, but also because its involvement in non-covalent C–H···π and hydrophobic intermolecular contacts appears to be an important factor contributing to the crystal-lattice (stabilizing) energy of 2

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction of cis-[RuCl2(dmso)(4)] with [6-(2-pyridinyl)-5,6-dihydrobenzimidazo[1,2-c] quinazoline] (L) afforded in pure form a blue ruthenium(II) complex, [Ru(L-1)(2)] (1), where the original L changed to [2-(1H-benzoimidazol-2-yl)-phenyl]-pyridin-2-ylmethylene-amine (HL1). Treatment of RuCl3 center dot 3H(2)O with L in dry tetrahydrofuran in inert atmosphere led to a green ruthenium(II) complex, trans-[RuCl2(L-2)(2)] (2), where L was oxidized in situ to the neutral species 6-pyridin-yl-benzo[4,5]imidazo[1,2-c] quinazoline (L-2). Complex 2 was also obtained from the reaction of RuCl3 center dot 3H(2)O with L-2 in dry ethanol. Complexes 1 and 2 have been characterized by physico-chemical and spectroscopic tools, and 1 has been structurally characterized by single-crystal X-ray crystallography. The electrochemical behavior of the complexes shows the Ru(III)/Ru(II) couple at different potentials with quasi-reversible voltammograms. The interaction of these complexes with calf thymus DNA by using absorption and emission spectral studies allowed determination of the binding constant K-b and the linear Stern-Volmer quenching constant K-SV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Mo(II) complexes with 2,2'-dipyridylamine (L1), [Mo(CH(3)CN)(eta(3)-C(3)H(5))(CO)(2)(L1)]OTf (C1a) and [{MoBr(eta(3)-C(3)H(5))(CO)(2)(L1)}(2)(4,4'-bipy)](PF(6))(2) (C1b), with {[bis(2-pyridyl)amino]carbonyl}ferrocene (L2), [MoBr(eta(3)-C(3)H(5))(CO)(2)(L2)] (C2), and with the new ligand N,N-bis(ferrocenecarbonyl)-2-aminopyridine (L3), [MoBr(eta(3)-C(3)H(5))(CO)(2)(L3)] (C3), were prepared and characterized by FTIR and (1)H and (13)C NMR spectroscopy. C1a, C1b, L3, and C2 were also structurally characterized by single crystal X-ray diffraction. The Mo(II) coordination sphere in all complexes features the facial arrangement of allyl and carbonyl ligands, with the axial isomer present in C1a and C2, and the equatorial in the binuclear C1b. In both C1a and C1b complexes, the L1 ligand is bonded to Mo(II) through the nitrogen atoms and the NH group is involved in hydrogen bonds. The X-ray single crystal structure of C2 shows that L2 is coordinated in a kappa(2)-N,N-bidentate chelating fashion. Complex C3 was characterized as [MoBr(eta(3)-C(3)H(5))(CO)(2)(L3)] with L3 acting as a kappa(2)-N,O-bidentate ligand, based on the spectroscopic data, complemented by DFT calculations. The electrochemical behavior of the monoferrocenyl and diferrocenyl ligands L2 and L3 has been studied together with that of their Mo(II) complexes C2 and C3. As much as possible, the nature of the different redox changes has been confirmed by spectrophotometric measurements. The nature of the frontier orbitals, namely the localization of the HOMO in Mo for both in C2 and C3, was determined by DFT studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method and oligonucleotide compound for inhibiting replication of a nidovirus in virus-infected animal cells are disclosed. The compound (i) has a nuclease-resistant backbone, (ii) is capable of uptake by the infected cells, (iii) contains between 8-25 nucleotide bases, and (iv) has a sequence capable of disrupting base pairing between the transcriptional regulatory sequences in the 5′ leader region of the positive-strand viral genome and negative-strand 3′ subgenomic region. In practicing the method, infected cells are exposed to the compound in an amount effective to inhibit viral replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invention provides antisense antiviral compounds and methods of their use and production in inhibition of growth of viruses of the Arenaviridae family and in the treatment of a viral infection. The compounds are particularly useful in the treatment of Arenavirus infection in a mammal. The antisense antiviral compounds are substantially uncharged morpholino oligonucleotides have a sequence of 12-40 subunits, including at least 12 subunits having a targeting sequence that is complementary to a region associated with viral RNA sequences within a 19 nucleotide region of the 5′-terminal regions of the viral RNA, viral complementary RNA and/or mRNA identified by SEQ ID NO:1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). During surface preparation, preferential sputtering leads to a depletion of In within the top few layers for all three surfaces. The near-surface regions remain slightly Pd-rich until annealing to ∼580 K. A transition occurs between 580 and 660 K where In segregates towards the surface and the near-surface regions become slightly In-rich above ∼660 K. This transition is accompanied by a sharpening of LEED patterns and formation of flat step-terrace morphology, as observed by STM. Several superstructures have been identified for the different surfaces associated with this process. Annealing to higher temperatures (≥750 K) leads to faceting via thermal etching as shown for the (110) surface, with a bulk In composition close to the In-rich limit of the existence domain of the cubic phase. The Pd-rich InPd(111) is found to be consistent with a Pd-terminated bulk truncation model as shown by dynamical LEED analysis while, after annealing at higher temperature, the In-rich InPd(111) is consistent with an In-terminated bulk truncation, in agreement with density functional theory (DFT) calculations of the relative surface energies. More complex surface structures are observed for the (100) surface. Additionally, individual grains of a polycrystalline sample are characterized by micro-spot XPS and LEED as well as low-energy electron microscopy. Results from both individual grains and “global” measurements are interpreted based on comparison to our single crystals findings, DFT calculations and previous literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The [Ru(phen)2(dppz)]2+ complex (1) is non-emissive in water but is highly luminescent in organic solvents or when bound to DNA, making it a useful probe for DNA binding. To date, a complete mechanistic explanation for this “light-switch” effect is still lacking. With this in mind we have undertaken an ultrafast time resolved infrared (TRIR) study of 1 and directly observe marker bands between 1280–1450 cm-1, which characterise both the emissive “bright” and the non-emissive “dark” excited states of the complex, in CD3CN and D2O respectively. These characteristic spectral features are present in the [Ru(dppz)3]2+ solvent light-switch complex but absent in [Ru(phen)3]2+, which is luminescent in both solvents. DFT calculations show that the vibrational modes responsible for these characteristic bands are predominantly localised on the dppz ligand. Moreover, they reveal that certain vibrational modes of the “dark” excited state couple with vibrational modes of two coordinating water molecules, and through these to the bulk solvent, thus providing a new insight into the mechanism of the light-switch effect. We also demonstrate that the marker bands for the “bright” state are observed for both L- and D enantiomers of 1 when bound to DNA and that photo-excitation of the complex induces perturbation of the guanine and cytosine carbonyl bands. This perturbation is shown to be stronger for the L enantiomer, demonstrating the different binding site properties of the two enantiomers and the ability of this technique to determine the identity and nature of the binding site of such intercalators.