847 resultados para heat treating
Resumo:
IMPORTANCE: Glioblastoma is the most devastating primary malignancy of the central nervous system in adults. Most patients die within 1 to 2 years of diagnosis. Tumor-treating fields (TTFields) are a locoregionally delivered antimitotic treatment that interferes with cell division and organelle assembly. OBJECTIVE: To evaluate the efficacy and safety of TTFields used in combination with temozolomide maintenance treatment after chemoradiation therapy for patients with glioblastoma. DESIGN, SETTING, AND PARTICIPANTS: After completion of chemoradiotherapy, patients with glioblastoma were randomized (2:1) to receive maintenance treatment with either TTFields plus temozolomide (n = 466) or temozolomide alone (n = 229) (median time from diagnosis to randomization, 3.8 months in both groups). The study enrolled 695 of the planned 700 patients between July 2009 and November 2014 at 83 centers in the United States, Canada, Europe, Israel, and South Korea. The trial was terminated based on the results of this planned interim analysis. INTERVENTIONS: Treatment with TTFields was delivered continuously (>18 hours/day) via 4 transducer arrays placed on the shaved scalp and connected to a portable medical device. Temozolomide (150-200 mg/m2/d) was given for 5 days of each 28-day cycle. MAIN OUTCOMES AND MEASURES: The primary end point was progression-free survival in the intent-to-treat population (significance threshold of .01) with overall survival in the per-protocol population (n = 280) as a powered secondary end point (significance threshold of .006). This prespecified interim analysis was to be conducted on the first 315 patients after at least 18 months of follow-up. RESULTS: The interim analysis included 210 patients randomized to TTFields plus temozolomide and 105 randomized to temozolomide alone, and was conducted at a median follow-up of 38 months (range, 18-60 months). Median progression-free survival in the intent-to-treat population was 7.1 months (95% CI, 5.9-8.2 months) in the TTFields plus temozolomide group and 4.0 months (95% CI, 3.3-5.2 months) in the temozolomide alone group (hazard ratio [HR], 0.62 [98.7% CI, 0.43-0.89]; P = .001). Median overall survival in the per-protocol population was 20.5 months (95% CI, 16.7-25.0 months) in the TTFields plus temozolomide group (n = 196) and 15.6 months (95% CI, 13.3-19.1 months) in the temozolomide alone group (n = 84) (HR, 0.64 [99.4% CI, 0.42-0.98]; P = .004). CONCLUSIONS AND RELEVANCE: In this interim analysis of 315 patients with glioblastoma who had completed standard chemoradiation therapy, adding TTFields to maintenance temozolomide chemotherapy significantly prolonged progression-free and overall survival. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00916409.
Resumo:
Better models are needed for radiative heat transfer in boiler furnaces. If the process is known better, combustion in the furnace can be optimized to produce low emissions. It makes the process to be environmental friendly. Furthermore, if there is a better model of the furnace it can more fully explain what is happening inside the furnace. Using of the model one can quickly and easily analyze how it operates with bio fuels, moist fuels or difficult fuels and improve the operation. Models helps with better estimation of furnace dimensions and result in more accurate understanding of operation. Key component lacking in these models is radiative heat transfer in particle laden gases. If there are no particles than radiative heat transfer can be calculated approximately. There are two problems with current models when used with flow modeling. The first one is a need to account for a particle laden gas and the second one is an absence of a fast algorithm. Fast calculation is needed if radiative heat transfer calculation is done for a large CDF model. Computations slow down if time is required for calculating radiative properties over and over again. This thesis presents a band model for radiative heat transfer in boiler furnaces. Advantage is a quickness of calculation and account of particles in the process.
Resumo:
This thesis gathers knowledge about ongoing high-temperature reactor projects around the world. Methods for calculating coolant flow and heat transfer inside a pebble-bed reactor core are also developed. The thesis begins with the introduction of high-temperature reactors including the current state of the technology. Process heat applications that could use the heat from a high-temperature reactor are also introduced. A suitable reactor design with data available in literature is selected for the calculation part of the thesis. Commercial computational fluid dynamics software Fluent is used for the calculations. The pebble-bed is approximated as a packed-bed, which causes sink terms to the momentum equations of the gas flowing through it. A position dependent value is used for the packing fraction. Two different models are used to calculate heat transfer. First a local thermal equilibrium is assumed between the gas and solid phases and a single energy equation is used. In the second approach, separate energy equations are used for the phases. Information about steady state flow behavior, pressure loss, and temperature distribution in the core is obtained as results of the calculations. The effect of inlet mass flow rate to pressure loss is also investigated. Data found in literature and the results correspond each other quite well, considered the amount of simplifications in the calculations. The models developed in this thesis can be used to solve coolant flow and heat transfer in a pebble-bed reactor, although additional development and model validation is needed for better accuracy and reliability.
Resumo:
The optimal design of a heat exchanger system is based on given model parameters together with given standard ranges for machine design variables. The goals set for minimizing the Life Cycle Cost (LCC) function which represents the price of the saved energy, for maximizing the momentary heat recovery output with given constraints satisfied and taking into account the uncertainty in the models were successfully done. Nondominated Sorting Genetic Algorithm II (NSGA-II) for the design optimization of a system is presented and implemented inMatlab environment. Markov ChainMonte Carlo (MCMC) methods are also used to take into account the uncertainty in themodels. Results show that the price of saved energy can be optimized. A wet heat exchanger is found to be more efficient and beneficial than a dry heat exchanger even though its construction is expensive (160 EUR/m2) compared to the construction of a dry heat exchanger (50 EUR/m2). It has been found that the longer lifetime weights higher CAPEX and lower OPEX and vice versa, and the effect of the uncertainty in the models has been identified in a simplified case of minimizing the area of a dry heat exchanger.
Resumo:
This study illustrates the different types of plate heat exchangers that are commonly used in various domestic and industrial applications. The main purpose of this paper was to devise a methodology that is capable of calculating optimum number of plates in the design of a plate heat exchanger. To obtain the appropriate number of plates, typically several iterations must be made before a final acceptable design is completed, since plate amount depends on many factors such as, flow velocities, physical properties of the streams, flow channel geometry, allowable pressure drop, plate dimensions, and the gap between the plates. The methodology presented here can be used as a general guide for designing a plate heat exchanger. To investigate the effects of relevant parameters on the thermal-hydraulic design of a plate heat exchanger, several experiments were carried out for single-phase and counter flow arrangement with two brazed plate heat exchangers by varying the flow rates and the inlet temperatures of the fluid streams. The actual heat transfer coefficients obtained based on the experiment were nearly close to the calculated values and to improve the design, a correction factor was introduced. Besides, the effect of flow channel velocity on the pressure drop inside the unit is presented.
Resumo:
It is often reasonable to convert old boiler to bubbling fluidized bed boiler instead of building a new one. Converted boiler consists of old and new heat surfaces which must be fitted to operate together. Prediction of heat transfer in not so ideal conditions sets challenges for designers. Two converted boilers situated in Poland were studied on the grounds of acceptance tests and further studies. Calculation of boiler process was performed with boiler design program. Main interest was heat transfer in superheaters and factors affecting it. Theory for heat transfer is presented according to information found from literature. Results obtained from experimental studies and calculations have been compared. With correct definitions calculated parameters corresponded well to measured data at boiler maximum design load. However overload situations revealed to be difficult to model at least without considering changes in the combustion process which requires readjustments to the design program input values.
Resumo:
Chromium (VI) removal and its reduction to chromium (III) from aqueous solution by untreated and heat-treated Quercus cerris and heat-treated Quercus suber black agglomerate cork granules was investigated. Initial screening studies revealed that among the sorbents tested, untreated Q. cerris and Q. suber black agglomerate are the most efficient in the removal of Cr(VI) ions and were selected for adsorption essays. Heat treatment adversely affected chromium adsorption and chromium (VI) reduction in Q. cerris cork. The highest metal uptake was found at pH 3.0 for Q. cerris and pH 2.0 for black agglomerate. The experimental data fitted the Langmuir model and the calculated qmax was 22.98 mg/g in black agglomerate and 21.69 mg/g in untreated Q. cerris cork. The FTIR results indicated that while in black agglomerate, lignin is the sole component responsible for Cr(VI) sorption, and in untreated Q. cerris cork, suberin and polysaccharides also play a significant role on the sorption. The SEM-EDX results imply that chromium has a homogenous distribution within both cork granules. Also, phloemic residues in Q. cerris granules showed higher chromium concentration. The results obtained in this study show that untreated Q. cerris and black agglomerate cork granules can be an effective and economical alternative to more costly materials for the treatment of liquid wastes containing chromium
Resumo:
From the boiler design point of view, it is imperative to know and understand the operation of the boiler. Since comprehensive measurement of a large furnace is impossible, the furnace can be modeled in order to study its behavior and phenomena. This requires the used model to be validated to correspond with the physical furnace behavior. In this thesis, a three dimensional furnace model is validated to match a bituminous coal utilizing, supercritical once-through circulating fluidized bed combustor based on measurement data. The validated model is used for analyzing the furnace heat transfer. Other heat transfer analysis methods are energy balance method based on tube surface temperature measurements and a method based on measured temperature difference between the tube crest and the fin. The latter method was developed in the thesis using Fluent-software. In the theory part, literature is reviewed and the fundamental aspects of circulating fluidized bed are discussed. These aspects are solid particle behavior in fluidization known as hydrodynamics, behavior of fuel and combustion and heat transfer. Fundamental aspects of modeling are also presented.
Resumo:
The identifiability of the parameters of a heat exchanger model without phase change was studied in this Master’s thesis using synthetically made data. A fast, two-step Markov chain Monte Carlo method (MCMC) was tested with a couple of case studies and a heat exchanger model. The two-step MCMC-method worked well and decreased the computation time compared to the traditional MCMC-method. The effect of measurement accuracy of certain control variables to the identifiability of parameters was also studied. The accuracy used did not seem to have a remarkable effect to the identifiability of parameters. The use of the posterior distribution of parameters in different heat exchanger geometries was studied. It would be computationally most efficient to use the same posterior distribution among different geometries in the optimisation of heat exchanger networks. According to the results, this was possible in the case when the frontal surface areas were the same among different geometries. In the other cases the same posterior distribution can be used for optimisation too, but that will give a wider predictive distribution as a result. For condensing surface heat exchangers the numerical stability of the simulation model was studied. As a result, a stable algorithm was developed.
Resumo:
The moisture sorption isotherms of Chilean papaya were determined at 5, 20, and 45 ºC, over a relative humidity range of 10-95%. The GAB, BET, Oswin, Halsey, Henderson, Smith, Caurie and Iglesias-Chirife models were applied to the sorption experimental data. The goodness of fit of the mathematical models was statistically evaluated by means of the determination coefficient, mean relative percentage deviation, sum square error, root-mean-square error, and chi-square values. The GAB, Oswin and Halsey models were found to be the most suitable for the description of the sorption data. The sorption heats calculated using the Clausius-Clapeyron equation were 57.35 and 59.98 kJ·mol-1, for adsorption and desorption isotherms, respectively.
Resumo:
Laboratories consume great amounts of hazardous chemicals substances and consequently generate wastewater containing them, for example formaldehyde. This substance is widely utilized to preserve biological samples generating many liters of this residue every year. The present work proposes the use of the photo-Fenton process to treat formaldehyde wastewater using sunlight irradiation. Some aspects were investigated such as the iron source, sample and hydrogen peroxide concentration and also the use of stirred systems. The use of ferrioxalate (0.5 mmol L-1) improved the efficiency of the process in relation to the use of iron nitrate, while at least 1.0 mol L-1 H2O2 is necessary to treat the sample of the 500 mg C L-1. Under these conditions, every formaldehyde detectable was degradeted and 89% of the dissolved organic carbon was removed in two hours of exposure to sunlight. These results are satisfaction considerate for São Paulo State Environmental Agency.