997 resultados para glassy state
Briefing: Factored material properties and limit state loads-unlikely extreme or impossible pretense
Resumo:
In the limit state design (LSD) method each design criterion is formally stated and assessed using a performance function. The performance function defines the relationship between the design parameters and the design criterion. In practice, LSD involves factoring up loads and factoring down calculated strengths and material parameters. This provides a convenient way to carry out routine probabilistic-based design. The factors are statistically calculated to produce a design with an acceptably low probability of failure. Hence the ultimate load and the design material properties are mathematical concepts that have no physical interpretation. They may be physically impossible. Similarly, the appropriate analysis model is also defined by the performance function and may not describe the real behaviour at the perceived physical equivalent limit condition. These points must be understood to avoid confusion in the discussion and application of partial factor LSD methods.
Resumo:
Resonance phenomena associated with the unimolecular dissociation of HO2 have been investigated quantum-mechanically by the Lanczos homogeneous filter diagonalization (LHFD) method. The calculated resonance energies, rates (widths), and product state distributions are compared to results from an autocorrelation function-based filter diagonalization (ACFFD) method. For calculating resonance wave functions via ACFFD, an analytical expression for the expansion coefficients of the modified Chebyshev polynomials is introduced. Both dissociation rates and product state distributions of O-2 show strong fluctuations, indicating the dissociation of HO2 is essentially irregular. (C) 2001 American Institute of Physics.
Resumo:
Wootters [Phys. Rev. Lett. 80, 2245 (1998)] has given an explicit formula for the entanglement of formation of two qubits in terms of what he calls the concurrence of the joint density operator. Wootters's concurrence is defined with the help of the superoperator that flips the spin of a qubit. We generalize the spin-flip superoperator to a universal inverter, which acts on quantum systems of arbitrary dimension, and we introduce the corresponding generalized concurrence for joint pure states of D-1 X D-2 bipartite quantum systems. We call this generalized concurrence the I concurrence to emphasize its relation to the universal inverter. The universal inverter, which is a positive, but not completely positive superoperator, is closely related to the completely positive universal-NOT superoperator, the quantum analogue of a classical NOT gate. We present a physical realization of the universal-NOT Superoperator.
Resumo:
Unit-efficiency homodyne detection of the resonance fluorescence of a two-level atom collapses the quantum state of the atom to a stochastically moving point on the Bloch sphere. Recently, Hofmann, Mahler, and Hess [Phys. Rev. A 57, 4877 (1998)] showed that by making part of the coherent driving proportional to the homodyne photocurrent one can stabilize the state to any point on the bottom-half of the sphere. Here we reanalyze their proposal using the technique of stochastic master equations, allowing their results to be generalized in two ways. First, we show that any point on the upper- or lower-half, but not the equator, of the sphere may be stabilized. Second, we consider nonunit-efficiency detection, and quantify the effectiveness of the feedback by calculating the maximal purity obtainable in any particular direction in Bloch space.
Resumo:
In Minister for Immigration and Multicultural Affairs v Khawar, the Federal Court upheld a finding setting aside the refusal of the Refugee Review Tribunal (RRT) to grant a protection visa to a Pakistani woman - Tribunal's failure to consider the notion that state tolerance of violence for discriminatory reasons could amount to persecution under the definition of 'refugee' in the Convention Relating to the Status of Refugees.
Resumo:
State-owned banks remain dominant in China's financial sector despite over two decades of gradual financial liberalization. Their performance is typically evaluated using commercial banking criteria. The standard view is that because state banks have experienced declining profitability and capital adequacy, they have been a drain on past economic development and endanger future growth prospects. However, we argue that state banks have strong development bank characteristics and hence warrant different performance criteria. The analysis in this paper suggests that while thier commercial performance may have been poor, the overall impact of state banks on China's economic development appears to have been both positive and sustainable. Copyright © 2001 John Wiley & Sons, Ltd.
Resumo:
Mutations in the extracellular M2-M3 loop of the glycine receptor (GlyR) alpha1 subunit have been shown previously to affect channel gating. In this study, the substituted cysteine accessibility method was used to investigate whether a structural rearrangement of the M2-M3 loop accompanies GlyR activation. All residues from R271C to V277C were covalently modified by both positively charged methanethiosulfonate ethyltrimethylammonium (MTSET) and negatively charged methanethiosulfonate ethylsulfonate (MTSES), implying that these residues form an irregular surface loop. The MTSET modification rate of all residues from R271C to K276C was faster in the glycine-bound state than in the unliganded state. MTSES modification of A272C, L274C, and V277C was also faster in the glycine-bound state. These results demonstrate that the surface accessibility of the M2-M3 loop is increased as the channel transitions from the closed to the open state, implying that either the loop itself or an overlying domain moves during channel activation.