999 resultados para geochimica
Resumo:
The thermal effects of three (one major and two minor) Miocene diabase intrusions on Cretaceous black shales from DSDP site 41-368 have been analyzed. A concentration gradient was observed, especially for the hydrocarbons, decreasing towards the major intrusion and between the three sills. The thermally-altered samples in the proximity of and between the sills contained elemental sulfur and an excess of thermally-derived pristane over phytane. whereas, the unaltered sediments contained no elemental sulfur, and more phytane than pristane. A maximum yield of the extractable hydrocarbons was observed at a depth of 7 m below the major sill. Two classes of molecular markers were present in this bitumen suite. The first was sesqui-, di- and triterpenoids and steranes. which could be correlated with both terrigenous and autochthonous sources. They were geologically mature and showed no significant changes due to the thermal stress. The second class was found in the altered samples, which contained only polynuclear aromatic hydrocarbons with low alkyl substitution and sulfur and oxygen heterocyclic aromatic compounds. These compounds were derived from pyrolytic reactions during the thermal event. Kerogen was isolated from all of these samples, but only traces of humic substances were present. The H/C, N/C, d13C, d34S and dD all exhibit the expected effects of thermal stress. The kerogen becomes more aromatized and richer in 13C, 34S and D in the proximity of and between the sills. Maturation trends were also measured by the vitrinite reflectance and electron spin resonance, where the thermal stress could be correlated with an elevated country rock temperature and an increased degree of aromaticity. The effects of in situ thermal stress on the organic-rich shales resulted in the generation and expulsion of petroliferous material from the vicinity of the sills.
Resumo:
Fifteen sediment samples were studied from five drill sites recovered by the Glomar Challenger on Legs I and IV in the Gulf of Mexico and western Atlantic. This study concentrated on compounds derived from biogenic precursors, namely: (1) hydrocarbons, (2) fatty acids, (3) pigments and (4) amino acids. Carbon isotope (dC13) data [values <(-26)?, relative to PDB], long-chain n-alkyl hydrocarbons (>>C27) with odd carbon numbered molecules dominating even carbon numbered species, and presence of perylene proved useful as possible indicators for terrigenous contributions to the organic matter in some samples. Apparently land-derived organic matter can be transported for distances over 1000 km into the ocean and their source still recognized. The study was primarily designed to investigate: (i) the sources of the organic matter present in the sediment, (ii) their stability with time of accumulation and (iii) the conditions necessary for in situ formation of new compounds.
Resumo:
The depth variations in the major chemical components dissolved in interstitial waters from the Tonga margin (ODP Site 841) are much more pronounced than those usually observed in deep-sea sediments. The extensive alteration of volcanic Miocene sediments to secondary minerals such as analcime, clays, and thaumasite forms a CaCl2-rich brine. The brine results from a high exchange of Ca to Na, K, and Mg and an increase in Cl concentrations due to removal of H2O from the fluid during the authigenesis of hydrous minerals. The formation of thaumasite could have partly controlled the concentration of dissolved SO4, HCO3, and Ca in the Miocene sediments. The strontium isotopic signature of the interstitial water suggests that alteration of the volcanic Miocene sediments occurred a long time after sedimentation. A transient diffusion model indicates that molecular diffusion was not prevented by lithologic barriers and that the formation of secondary minerals in the Miocene sediment occurred over a short period of time (e.g.,=1000 years). The extensive diagenetic processes in the Tonga margin were mostly caused by the recent intrusion of andesite sills and dikes into the Miocene sediments.
Resumo:
Neodymium isotopes are becoming widely used as a palaeoceanographic tool for reconstructing the source and flow direction of water masses. A new method using planktonic foraminifera which have not been chemically cleaned has proven to be a promising means of avoiding contamination of the deep ocean palaeoceanographic signal by detrital material. However, the exact mechanism by which the Nd isotope signal from bottom waters becomes associated with planktonic foraminifera, the spatial distribution of rare earth element (REE) concentrations within the shell, and the possible mobility of REE ions during changing redox conditions, have not been fully investigated. Here we present REE concentration and Nd isotope data from mixed species of planktonic foraminifera taken from plankton tows, sediment traps and a sediment core from the NW Atlantic. We used multiple geochemical techniques to evaluate how, where and when REEs become associated with planktonic foraminifera as they settle through the water column, reside at the surface and are buried in the sediment. Analyses of foraminifera shells from plankton tows and sediment traps between 200 and 2938 m water depth indicate that only ~20% of their associated Nd is biogenically incorporated into the calcite structure. The remaining 80% is associated with authigenic metal oxides and organic matter, which form in the water column, and remain extraneous to the carbonate structure. Remineralisation of these organic and authigenic phases releases ions back into solution and creates new binding sites, allowing the Nd isotope ratio to undergo partial equilibration with the ambient seawater, as the foraminifera fall through the water column. Analyses of fossil foraminifera shells from sediment cores show that their REE concentrations increase by up to 10-fold at the sediment-water interface, and acquire an isotopic signature of bottom water. Adsorption and complexation of REE3+ ions between the inner layers of calcite contributes significantly to elevated REE concentrations in foraminifera. The most likely source of REE ions at this stage of enrichment is from bottom waters and from the remineralisation of oxide phases which are in chemical equilibrium with the bottom waters. As planktonic foraminifera are buried below the sediment-water interface redox-sensitive ion concentrations are adjusted within the shells depending on the pore-water oxygen concentration. The concentration of ions which are passively redox sensitive, such as REE3+ ions, is also controlled to some extent by this process. We infer that (a) the Nd isotope signature of bottom water is preserved in planktonic foraminifera and (b) that it relies on the limited mobility of particle reactive REE3+ ions, aided in some environments by micron-scale precipitation of MnCO3. This study indicates that there may be sedimentary environments under which the bottom water Nd isotope signature is not preserved by planktonic foraminifera. Tests to validate other core sites must be carried out before downcore records can be used to interpret palaeoceanographic changes.
Resumo:
The distribution of Li isotopes in pore waters to a depth of 1157 m below seafloor is presented for ODP Sites 918 and 919 in the Irminger Basin, offshore Greenland. Lithium isotope data are accompanied by strontium isotope ratios to decipher diagenetic reactions in the sediments which are characterized by the pervasive presence of volcanic material, as well as by very high accumulation rates in the upper section. The lowering of the 87Sr/86Sr ratio below contemporaneous seawater values indicates several zones of volcanic material alteration. The Li isotope profiles are complex suggesting a variety of exchange reactions with the solid phases. These include cation exchange with NH4+ and mobilization from sediments at depth, in addition to the alteration of volcanic matter. Lithium isotopes are, therefore, a sensitive indicator of sediment-water interaction. d6Li values of pore waters at these two sites vary between -42 and -25?. At shallow depths (<100 mbsf), rapid decreases in the Li concentration, accompanied by a shift to heavier isotopic compositions, indicate uptake of Li into alteration products. A positive anomaly of d6Li observed at both sites is coincident with the NH4+ maximum produced by organic matter decomposition and may be related to ion exchange of Li from the sediments by NH4+. In the lower sediment column at Site 918, dissolved Li increases with depth and is characterized by enrichment of 6Li. The Li isotopic compositions of both the waters and the solid phase suggest that the enrichment of Li in deep interstitial waters is a result of release from pelagic sediments. The significance of sediment diagenesis and adsorption as sinks of oceanic Li is evaluated. The maximum diffusive flux into the sediment due to volcanic matter alteration can be no more than 5% of the combined inputs from rivers and submarine hydrothermal solutions. Adsorption on to sediments can only account for 5-10% of the total inputs from rivers and submarine hot springs.
Resumo:
A geochemical investigation has been conducted of a suite of four sediment cores collected from directly beneath the hydrothermal plume at distances of 2 to 25 km from the Rainbow hydrothermal field. As well as a large biogenic component (>80% CaCO3) these sediments record clear enrichments of the elements Fe, Cu, Mn, V, P, and As from hydrothermal plume fallout but only minor detrital background material. Systematic variations in the abundances of "hydrothermal" elements are observed at increasing distance from the vent site, consistent with chemical evolution of the dispersing plume. Further, pronounced Ni and Cr enrichments at specific levels within each of the two cores collected from closest to the vent site are indicative of discrete episodes of additional input of ultrabasic material at these two near-field locations. Radiocarbon dating reveals mean Holocene accumulation rates for all four cores of 2.7 to 3.7 cm.kyr?1, with surface mixed layers 7 to 10+ cm thick, from which a history of deposition from the Rainbow hydrothermal plume can be deduced. Deposition from the plume supplies elements to the underlying sediments that are either directly hydrothermally sourced (e.g., Fe, Mn, Cu) or scavenged from seawater via the hydrothermal plume (e.g., V, P, As). Holocene fluxes into to the cores' surface mixed layers are presented which, typically, are an order of magnitude greater than "background" authigenic fluxes from the open North Atlantic. One core, collected closest to the vent site, indicates that both the concentration and flux of hydrothermally derived material increased significantly at some point between 8 and 12 14C kyr ago; the preferred explanation is that this variation reflects the initiation/intensification of hydrothermal venting at the Rainbow hydrothermal field at this time - perhaps linked to some specific tectonic event in this fault-controlled hydrothermal setting.
Resumo:
The calcium isotopic compositions (d44Ca) of 30 high-purity nannofossil ooze and chalk and 7 pore fluid samples from ODP Site 807A (Ontong Java Plateau) are used in conjunction with numerical models to determine the equilibrium calcium isotope fractionation factor (a_s-f) between calcite and dissolved Ca2+ and the rates of post-depositional recrystallization in deep sea carbonate ooze. The value of a_s-f at equilibrium in the marine sedimentary section is 1.0000+/-0.0001, which is significantly different from the value (0.9987+/-0.0002) found in laboratory experiments of calcite precipitation and in the formation of biogenic calcite in the surface ocean. We hypothesize that this fractionation factor is relevant to calcite precipitation in any system at equilibrium and that this equilibrium fractionation factor has implications for the mechanisms responsible for Ca isotope fractionation during calcite precipitation. We describe a steady state model that offers a unified framework for explaining Ca isotope fractionation across the observed precipitation rate range of ~14 orders of magnitude. The model attributes Ca isotope fractionation to the relative balance between the attachment and detachment fluxes at the calcite crystal surface. This model represents our hypothesis for the mechanism responsible for isotope fractionation during calcite precipitation. The Ca isotope data provide evidence that the bulk rate of calcite recrystallization in freshly-deposited carbonate ooze is 30-40%/Myr, and decreases with age to about 2%/Myr in 2-3 million year old sediment. The recrystallization rates determined from Ca isotopes for Pleistocene sediments are higher than those previously inferred from pore fluid Sr concentration and are consistent with rates derived for Late Pleistocene siliciclastic sediments using uranium isotopes. Combining our results for the equilibrium fractionation factor and recrystallization rates, we evaluate the effect of diagenesis on the Ca isotopic composition of marine carbonates at Site 807A. Since calcite precipitation rates in the sedimentary column are many orders of magnitude slower than laboratory experiments and the pore fluids are only slightly oversaturated with respect to calcite, the isotopic composition of diagenetic calcite is likely to reflect equilibrium precipitation. Accordingly, diagenesis produces a maximum shift in d44Ca of +0.15? for Site 807A sediments but will have a larger impact where sedimentation rates are low, seawater circulates through the sediment pile, or there are prolonged depositional hiatuses.
Resumo:
Nineteen chert samples from a continuous core of the DSDP (Leg 17, Hole 167) were analysed for Ge; in addition we analysed five samples from other cores. The ages range between Late Jurassic, and Late Eocene. The concentration of Ge changes with age from 0.87 ppm in the oldest samples to 0.23 ppm in the youngest (equivalent to a Ge/Si decrease from 0.00000072 to 0.00000019). The decrease in Ge/Si is well correlated with the 87Sr/86Sr ratio in sea water of the relevant age. The interpretation of this trend may reflect: (a) different levels of Ge/Si in sea water as a result of a different ratio between hydrothermal and riverine input, (b) a diagenetic trend in siliceous sediments, (c) recording (by radiolaria) a transition between a radiolaria dominated ocean (with relatively high Ge/Si ratios in sea water) and diatom domination or (d) a combination of the above.
Resumo:
Stable isotopes of sedimentary nitrogen and organic carbon are widely used as proxy variables for biogeochemical parameters and processes in the water column. In order to investigate alterations of the primary isotopic signal by sedimentary diagenetic processes, we determined concentrations and isotopic compositions of inorganic nitrogen (IN), organic nitrogen (ON), total nitrogen (TN), and total organic carbon (TOC) on one short core recovered from sediments of the eastern subtropical Atlantic, between the Canary Islands and the Moroccan coast. Changes with depth in concentration and isotopic composition of the different fractions were related to early diagenetic conditions indicated by pore water concentrations of oxygen, nitrate, and ammonium. Additionally, the nature of the organic matter was investigated by Rock-Eval pyrolysis and microscopic analysis. A decrease in ON during aerobic organic matter degradation is accompanied by an increase of the 15N/14N ratio. Changes in the isotopic composition of ON can be described by Rayleigh fractionation kinetics which are probably related to microbial metabolism. The influence of IN depleted in 15N on the bulk sedimentary (TN) isotope signal increases due to organic matter degradation, compensating partly the isotopic changes in ON. In anoxic sediments, fixation of ammonium between clay lattices results in a decrease of stable nitrogen isotope ratio of IN and TN. Changes in the carbon isotopic composition of TOC have to be explained by Rayleigh fractionation in combination with different remineralization kinetics of organic compounds with different isotopic composition. We have found no evidence for preferential preservation of terrestrial organic carbon. Instead, both TOC and refractory organic carbon are dominated by marine organic matter. Refractory organic carbon is depleted in 13C compared to TOC.
Resumo:
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated d34S_sulfide (3.7 to 12.7?). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high d34S_sulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (~400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ~300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5?) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 mln ton seawater S per year. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.
Resumo:
The large discrepancy between field and laboratory measurements of mineral reaction rates is a long-standing problem in earth sciences, often attributed to factors extrinsic to the mineral itself. Nevertheless, differences in reaction rate are also observed within laboratory measurements, raising the possibility of intrinsic variations as well. Critical insight is available from analysis of the relationship between the reaction rate and its distribution over the mineral surface. This analysis recognizes the fundamental variance of the rate. The resulting anisotropic rate distributions are completely obscured by the common practice of surface area normalization. In a simple experiment using a single crystal and its polycrystalline counterpart, we demonstrate the sensitivity of dissolution rate to grain size, results that undermine the use of "classical" rate constants. Comparison of selected published crystal surface step retreat velocities (Jordan and Rammensee, 1998) as well as large single crystal dissolution data (Busenberg and Plummer, 1986) provide further evidence of this fundamental variability. Our key finding highlights the unsubstantiated use of a single-valued "mean" rate or rate constant as a function of environmental conditions. Reactivity predictions and long-term reservoir stability calculations based on laboratory measurements are thus not directly applicable to natural settings without a probabilistic approach. Such a probabilistic approach must incorporate both the variation of surface energy as a general range (intrinsic variation) as well as constraints to this variation owing to the heterogeneity of complex material (e.g., density of domain borders). We suggest the introduction of surface energy spectra (or the resulting rate spectra) containing information about the probability of existing rate ranges and the critical modes of surface energy.