928 resultados para genomics
Resumo:
In Escherichia coli, the canonical intrinsic terminator of transcription includes a palindrome followed by a U-trail on the transcript. The apparent underrepresentation of such terminators in eubacterial genomes led us to develop a rapid and accurate algorithm, GeSTer, to predict putative intrinsic terminators. Now, we have analyzed 378 genome sequences with an improved version of GeSTer. Our results indicate that the canonical E. coli type terminators are not overwhelmingly abundant in eubacteria. The atypical structures, having stem-loop structures but lacking ‘U’ trail, occur downstream of genes in all the analyzed genomes but different phyla show conserved preference for different types of terminators. This propensity correlates with genomic GC content and presence of the factor, Rho. 60–70% of identified terminators in all the genomes show “optimized” stem-length and ΔG. These results provide evidence that eubacteria extensively rely on the mechanism of intrinsic termination, with a considerable divergence in their structure, positioning and prevalence. The software and detailed results for individual genomes are freely available on request
Resumo:
Neuronal ceroid lipofuscinoses (NCLs) are a family of inherited pediatric neurodegenerative disorders, leading to retinal degeneration, death of selective neuronal populations and accumulation of autofluorscent ceroid-lipopigments. The clinical manifestations are generally similar in all forms. The Finnish variant late infantile neuronal ceroid lipofuscinosis (vLINCLFin) is a form of NCL, especially enriched in the Finnish population. The aim of this thesis was to analyse the brain pathology of vLINCLFin utilising the novel Cln5-/- mouse model. Gene expression profiling of the brains of already symptomatic Cln5-/- mice revealed that inflammation, neurodegeneration and defects in myelinization are the major characteristics of the later stages of the disease. Histological characterization of the brain pathology confirmed that the thalamocortical system is affected in Cln5-/- mice, similarly to the other NCL mouse models. However, whereas the brain pathology in all other analyzed NCL mice initiate in the thalamus and spread only months later to the cortex, we observed that the sequence of events is uniquely reversed in Cln5-/- mice; beginning in the cortex and spreading to the thalamus only months later. We could also show that even though neurodegeneration is inititated in the cortex, reactive gliosis and loss of myelin are evident in specific nuclei of the thalamus already in the 1 month old brain. To obtain a deeper insight into the disturbed metabolic pathways, we performed gene expression profiling of presymptomatic mouse brains. We validated these findings with immunohistological analyses, and could show that cytoskeleton and myelin were affected in Cln5-/- mice. Comparison of gene expression profiling results of Cln5-/- and Cln1-/- mice, further highlighted that these two NCL models share a common defective pathway, leading to disturbances in the neuronal growth cone and cytoskeleton. Encouraged by the evidence of this defected pathway, we analyzed the molecular interactions of NCL-proteins and observed that Cln5 and Cln1/Ppt1 proteins interact with each other. Furthermore, we demonstrated that Cln5 and Cln1/Ppt1 share an interaction partner, the F1-ATP synthase, potentially linking both vLINCLFIN and INCL diseases to disturbed lipid metabolism. In addition, Cln5 was shown to interact with other NCL proteins; Cln2, Cln3, Cln6 and Cln8, implicating a central role for Cln5 in the NCL pathophysiology. This study is the first to describe the brain pathology and gene expression changes in the Cln5-/- mouse. Together the findings presented in this thesis represent novel information of the disease processes and the molecular mechanisms behind vLINCLFin and have highlighted that vLINCLFin forms a very important model to analyze the pathophysiology of NCL diseases.
Resumo:
Background: Adenosine is a potent sleep-promoting substance, and one of its targets is the basal forebrain. Fairly little is known about its mechanism of action in the basal forebrain and about the receptor subtype mediating its regulating effects on sleep homeostasis. Homeostatic deficiency might be one of the causes of the profoundly disturbed sleep pattern in major depressive disorder, which could explain the reduced amounts of delta-activity-rich stages 3 and 4. Since major depression has a relatively high heritability, and on the other hand adenosine regulates sleep homeostasis and might also be involved in mood modulation, adenosine-related genes should be considered for their possible contribution to a predisposition for depression and disturbed sleep in humans. Depression is a complex disorder likely involving the abnormal functioning of several genes. Novel target genes which could serve as the possible common substrates for depression and comorbid disturbed sleep should be identified. In this way specific brain areas related to sleep regulation should be studied by using animal model of depression which represents more homogenous phenotype as compared to humans. It is also important to study these brain areas during the development of depressive-like features to understand how early changes could facilitate pathophysiological changes in depression. Aims and methods: We aimed to find out whether, in the basal forebrain, adenosine induces recovery non-rapid eye movement (NREM) sleep after prolonged waking through the A1 or/and A2A receptor subtype. A1 and A2A receptor antagonists were perfused into the rat basal forebrain during 3 h of sleep deprivation, and the amount of NREM sleep and delta power during recovery NREM sleep were analyzed. We then explored whether polymorphisms in genes related to the metabolism, transport and signaling of adenosine could predispose to depression accompanied by signs of disturbed sleep. DNA from 1423 individuals representative of the Finnish population and including controls and cases with depression, depression accompanied by early morning awakenings and depression accompanied by fatigue, was used in the study to investigate the possible association between polymorphisms from adenosine-related genes and cases. Finally to find common molecular substrates of depression and disturbed sleep, gene expression changes were investigated in specific brain areas in the rat clomipramine model of depression. We focused on the basal forebrain of 3-week old clomipramine-treated rats which develop depressive-like symptoms later in adulthood and on the hypothalamus of adult female clomipramine-treated rats. Results: Blocking of the A1 receptor during sleep deprivation resulted in a reduction of the recovery NREM sleep amount and delta power, whereas A2A receptor antagonism had no effect. Polymorphisms in adenosine-related genes SLC29A3 (equilibrative nucleoside transporter type 3) in women and SLC28A1 (concentrative nucleoside transporter type 1) in men associated with depression alone as well as when accompanied by early morning awakenings and fatigue. In Study III the basal forebrain of postnatal rats treated with clomipramine displayed disturbances in gamma-aminobutyric acid (GABA) receptor type A signaling, in synaptic transmission and possible epigenetic changes. CREB1 was identified as a common transcription denominator which also mediates epigenetic regulation. In the hypothalamus the major changes included the expression of genes in GABA-A receptor pathway, K+ channel-related, glutamatergic and mitochondrial genes, as well as an overexpression of genes related to RNA and mRNA processing. Conclusions: Adenosine plays an important role in sleep homeostasis by promoting recovery NREM sleep via the A1 receptor subtype in the basal forebrain. Also adenosine levels might contribute to the risk of depression with disturbed sleep, since the genes encoding nucleoside transporters showed the strongest associations with depression alone and when accompanied by signs of disturbed sleep in both women and men. Sleep and mood abnormalities in major depressive disorder could be a consequence of multiple changes at the transcriptional level, GABA-A receptor signaling and synaptic transmission in sleep-related basal forebrain and the hypothalamus.
Resumo:
BACKGROUND: Genetic variation contributes to the risk of developing endometriosis. This review summarizes gene mapping studies in endometriosis and the prospects of finding gene pathways contributing to disease using the latest genome-wide strategies. METHODS: To identify candidate-gene association studies of endometriosis, a systematic literature search was conducted in PubMed of publications up to 1 April 2008, using the search terms 'endometriosis' plus 'allele' or 'polymorphism' or 'gene'. Papers included were those with information on both case and control selection, showed allelic and/or genotypic results for named germ-line polymorphisms and were published in the English language. RESULTS: Genetic variants in 76 genes have been examined for association, but none shows convincing evidence of replication in multiple studies. There is evidence for genetic linkage to chromosomes 7 and 10, but the genes (or variants) in these regions contributing to disease risk have yet to be identified. Genome-wide association is a powerful method that has been successful in locating genetic variants contributing to a range of common diseases. Several groups are planning these studies in endometriosis. For this to be successful, the endometriosis research community must work together to genotype sufficient cases, using clearly defined disease classifications, and conduct the necessary replication studies in several thousands of cases and controls. CONCLUSIONS: Genes with convincing evidence for association with endometriosis are likely to be identified in large genome-wide studies. This will provide a starting point for functional and biological studies to develop better diagnosis and treatment for this debilitating disease.
Resumo:
Latent class analysis was performed on migraine symptom data collected in a Dutch population sample (N = 12,210, 59% female) in order to obtain empirical groupings of individuals suffering from symptoms of migraine headache. Based on these heritable groupings (h(2) = 0.49, 95% CI: 0.41-0.57) individuals were classified as affected (migrainous headache) or unaffected. Genome-wide linkage analysis was performed using genotype data from 105 families with at least 2 affected siblings. In addition to this primary phenotype, linkage analyses were performed for the individual migraine symptoms. Significance levels, corrected for the analysis of multiple traits, were determined empirically via a novel simulation approach. Suggestive linkage for migrainous headache was found on chromosomes 1 (LOD = 1.63; pointwise P = 0.0031), 13 (LOD = 1.63; P = 0.0031), and 20 (LOD = 1.85; P = 0.0018). Interestingly, the chromosome 1 peak was located close to the ATP1A2 gene, associated with familial hemiplegic migraine type 2 (FHM2). Individual symptom analysis produced a LOD score of 1.97 (P = 0.0013) on chromosome 5 (photo/phonophobia), a LOD score of 2.13 (P = 0.0009) on chromosome 10 (moderate/severe pain intensity) and a near significant LOD score of 3.31 (P = 0.00005) on chromosome 13 (pulsating headache). These peaks were all located near regions previously reported in migraine linkage studies. Our results provide important replication and support for the presence of migraine susceptibility genes within these regions, and further support the utility of an LCA-based phenotyping approach and analysis of individual symptoms in migraine genetic research. Additionally, our novel "2-step" analysis and simulation approach provides a powerful means to investigate linkage to individual trait components.
Resumo:
Background Next-generation sequencing technology is an important tool for the rapid, genome-wide identification of genetic variations. However, it is difficult to resolve the ‘signal’ of variations of interest and the ‘noise’ of stochastic sequencing and bioinformatic errors in the large datasets that are generated. We report a simple approach to identify regional linkage to a trait that requires only two pools of DNA to be sequenced from progeny of a defined genetic cross (i.e. bulk segregant analysis) at low coverage (<10×) and without parentage assignment of individual SNPs. The analysis relies on regional averaging of pooled SNP frequencies to rapidly scan polymorphisms across the genome for differential regional homozygosity, which is then displayed graphically. Results Progeny from defined genetic crosses of Tribolium castaneum (F4 and F19) segregating for the phosphine resistance trait were exposed to phosphine to select for the resistance trait while the remainders were left unexposed. Next generation sequencing was then carried out on the genomic DNA from each pool of selected and unselected insects from each generation. The reads were mapped against the annotated T. castaneum genome from NCBI (v3.0) and analysed for SNP variations. Since it is difficult to accurately call individual SNP frequencies when the depth of sequence coverage is low, variant frequencies were averaged across larger regions. Results from regional SNP frequency averaging identified two loci, tc_rph1 on chromosome 8 and tc_rph2 on chromosome 9, which together are responsible for high level resistance. Identification of the two loci was possible with only 5-7× average coverage of the genome per dataset. These loci were subsequently confirmed by direct SNP marker analysis and fine-scale mapping. Individually, homozygosity of tc_rph1 or tc_rph2 results in only weak resistance to phosphine (estimated at up to 1.5-2.5× and 3-5× respectively), whereas in combination they interact synergistically to provide a high-level resistance >200×. The tc_rph2 resistance allele resulted in a significant fitness cost relative to the wild type allele in unselected beetles over eighteen generations. Conclusion We have validated the technique of linkage mapping by low-coverage sequencing of progeny from a simple genetic cross. The approach relied on regional averaging of SNP frequencies and was used to successfully identify candidate gene loci for phosphine resistance in T. castaneum. This is a relatively simple and rapid approach to identifying genomic regions associated with traits in defined genetic crosses that does not require any specialised statistical analysis.
Resumo:
Sorghum is a food and feed cereal crop adapted to heat and drought and a staple for 500 million of the world’s poorest people. Its small diploid genome and phenotypic diversity make it an ideal C4 grass model as a complement to C3 rice. Here we present high coverage (16-45 × ) resequenced genomes of 44 sorghum lines representing the primary gene pool and spanning dimensions of geographic origin, end-use and taxonomic group. We also report the first resequenced genome of S. propinquum, identifying 8 M high-quality SNPs, 1.9 M indels and specific gene loss and gain events in S. bicolor. We observe strong racial structure and a complex domestication history involving at least two distinct domestication events. These assembled genomes enable the leveraging of existing cereal functional genomics data against the novel diversity available in sorghum, providing an unmatched resource for the genetic improvement of sorghum and other grass species.
Resumo:
Papaya has been used medicinally to treat an extremely broad range of ailments including intestinal worms, dengue fever, diabetes, hypertension, wound repair, and as an abortion agent. Although papaya is most commonly consumed as a ripe fruit, the plant tissues used as curatives are mainly derived from the seeds, young leaves, latex, or green immature fruit. The agents responsible for action have not been conclusively identified for all uses, but there is increasing evidence that activity may be attributable to benzyl isothiocyanate (BITC) in the case of anthelmintic and abortifacient action, and to the protease papain, and possibly chymopapain, in relation to wound repair. The location of these compounds in papaya tissues is likely to explain why different tissues are used for different ailments. Seeds, young leaves, and latex are good sources of BITC and are consequently used as a curative for intestinal worms. Immature green fruit is a good source of protease and is used as a topical application for burn wounds to accelerate tissue repair. The type of papaya tissue used may therefore provide a clue as to the active agent in ailments where papaya extracts have exhibited some activity (diabetes, hypertension, dengue fever). However, the compound(s) responsible for action remains to be identified. Modes of action of papaya extracts vary, but may include lowering blood glucose levels (diabetes), vascular muscle relaxation (hypertension), increasing blood cell count (dengue fever), stimulation of cell proliferation (wound healing), spasmodic contraction of uterine muscles (abortion), and induction of phase 2 enzymes (cancer chemoprevention). Although there has been increased study over the last decade into the physiological mode of action of papaya extracts, further increase in the knowledge of the compounds responsible for curative action will help to transfer the use of papaya from folklore remedies to mainstream medicinal use.
Resumo:
Termites play a major role in foraging and degradation of plant biomass as well as cultivating bioactive microorganisms for their defense. Current advances in “omics” sciences are revealing insights into function-related presence of these symbionts, and their related biosynthetic activities and genes identified in gut symbiotic bacteria might offer a significant potential for biotechnology and biodiscovery. Actinomycetes have been the major producers of bioactive compounds with an extraordinary range of biological activities. These metabolites have been in use as anticancer agents, immune suppressants, and most notably, as antibiotics. Insect-associated actinomycetes have also been reported to produce a range of antibiotics such as dentigerumycin and mycangimycin. Advances in genomics targeting a single species of the unculturable microbial members are currently aiding an improved understanding of the symbiotic interrelationships among the gut microorganisms as well as revealing the taxonomical identity and functions of the complex multilayered symbiotic actinofloral layers. If combined with target-directed approaches, these molecular advances can provide guidance towards the design of highly selective culturing methods to generate further information related to the physiology and growth requirements of these bioactive actinomycetes associated with the termite guts. This chapter provides an overview on the termite gut symbiotic actinoflora in the light of current advances in the “omics” science, with examples of their detection and selective isolation from the guts of the Sunshine Coast regional termite Coptotermes lacteus in Queensland, Australia
Resumo:
The Australian National Mango Breeding Program has been breeding mangoes since 1994. In recent years, evaluation of the elite selection have identified three high performing hybrids, NMBP1243, NMBP1201 and NMBP4069, which are in the process of commercial release. These hybrids all have 'Kensington Pride' as their paternal parent and are characterised by improved fruit colour and tree productivity over 'Kensington Pride'. NMBP1243 is noted for its early season production, and NMBP1201 and NMBP4046 for their firm fruit. The hybrids were produced using hand pollination breeding and selection techniques. The breeding program is ongoing with the current hybridisation program being supported by a multidiscipline approach, that includes marker assisted screening, disease screening, postharvest evaluation and a genomics gene discovery program.
Resumo:
The goal of this research is to understand the function of allelic variation of genes underpinning the stay-green drought adaptation trait in sorghum in order to enhance yield in water-limited environments. Stay-green, a delayed leaf senescence phenotype in sorghum, is primarily an emergent consequence of the improved balance between the supply and demand of water. Positional and functional fine-mapping of candidate genes associated with stay-green in sorghum is the focus of an international research partnership between Australian (UQ/DAFFQ) and US (Texas A&M University) scientists. Stay-green was initially mapped to four chromosomal regions (Stg1, Stg2, Stg3, and Stg4) by a number of research groups in the US and Australia. Physiological dissection of near-isolines containing single introgressions of Stg QTL (Stg1-4) indicate that these QTL reduce water demand before flowering by constricting the size of the canopy, thereby increasing water availability during grain filling and, ultimately, grain yield. Stg and root angle QTL are also co-located and, together with crop water use data, suggest the role of roots in the stay-green phenomenon. Candidate genes have been identified in Stg1-4, including genes from the PIN family of auxin efflux carriers in Stg1 and Stg2, with 10 of 11 PIN genes in sorghum co-locating with Stg QTL. Modified gene expression in some of these PIN candidates in the stay-green compared with the senescent types has been found in preliminary RNA expression profiling studies. Further proof-of-function studies are underway, including comparative genomics, SNP analysis to assess diversity at candidate genes, reverse genetics and transformation.
Resumo:
Microarrays are high throughput biological assays that allow the screening of thousands of genes for their expression. The main idea behind microarrays is to compute for each gene a unique signal that is directly proportional to the quantity of mRNA that was hybridized on the chip. A large number of steps and errors associated with each step make the generated expression signal noisy. As a result, microarray data need to be carefully pre-processed before their analysis can be assumed to lead to reliable and biologically relevant conclusions. This thesis focuses on developing methods for improving gene signal and further utilizing this improved signal for higher level analysis. To achieve this, first, approaches for designing microarray experiments using various optimality criteria, considering both biological and technical replicates, are described. A carefully designed experiment leads to signal with low noise, as the effect of unwanted variations is minimized and the precision of the estimates of the parameters of interest are maximized. Second, a system for improving the gene signal by using three scans at varying scanner sensitivities is developed. A novel Bayesian latent intensity model is then applied on these three sets of expression values, corresponding to the three scans, to estimate the suitably calibrated true signal of genes. Third, a novel image segmentation approach that segregates the fluorescent signal from the undesired noise is developed using an additional dye, SYBR green RNA II. This technique helped in identifying signal only with respect to the hybridized DNA, and signal corresponding to dust, scratch, spilling of dye, and other noises, are avoided. Fourth, an integrated statistical model is developed, where signal correction, systematic array effects, dye effects, and differential expression, are modelled jointly as opposed to a sequential application of several methods of analysis. The methods described in here have been tested only for cDNA microarrays, but can also, with some modifications, be applied to other high-throughput technologies. Keywords: High-throughput technology, microarray, cDNA, multiple scans, Bayesian hierarchical models, image analysis, experimental design, MCMC, WinBUGS.
Resumo:
Background: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. Results: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316bp. Variety IW had the highest SNP frequency (one SNP every 258bp) while KP and NDM had similar frequencies (one SNP every 369bp and 360bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. Conclusions: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango. © 2015 Hoang et al.
Resumo:
Increasing salinity levels in freshwater and coastal environments caused by sea level rise linked to climate change is now recognized to be a major factor that can impact fish growth negatively, especially for freshwater teleost species. Striped catfish (Pangasianodon hypophthalmus) is an important freshwater teleost that is now widely farmed across the Mekong River Delta in Vietnam. Understanding the basis for tolerance and adaptation to raised environmental salinity conditions can assist the regional culture industry to mitigate predicted impacts of climate change across this region. Attempt of next generation sequencing using the ion proton platform results in more than 174 million raw reads from three tissue libraries (gill, kidney and intestine). Reads were filtered and de novo assembled using a variety of assemblers and then clustered together to generate a combined reference transcriptome. Downstream analysis resulted in a final reference transcriptome that contained 60,585 transcripts with an N50 of 683 bp. This resource was further annotated using a variety of bioinformatics databases, followed by differential gene expression analysis that resulted in 3062 transcripts that were differentially expressed in catfish samples raised under two experimental conditions (0 and 15 ppt). A number of transcripts with a potential role in salinity tolerance were then classified into six different functional gene categories based on their gene ontology assignments. These included; energy metabolism, ion transportation, detoxification, signal transduction, structural organization and detoxification. Finally, we combined the data on functional salinity tolerance genes into a hypothetical schematic model that attempted to describe potential relationships and interactions among target genes to explain the molecular pathways that control adaptive salinity responses in P. hypophthalmus. Our results indicate that P. hypophthalmus exhibit predictable plastic regulatory responses to elevated salinity by means of characteristic gene expression patterns, providing numerous candidate genes for future investigations.