952 resultados para genetic heterogeneity of environmental variation
Resumo:
Hypertension is a common trait of multifactorial determination imparting an increased risk of myocardial infarction, stroke, and end-stage renal disease. The primary determinants of hypertension, as well as the factors which determine specific morbid sequelae, remain unknown in the vast majority of subjects. Knowledge that a large fraction of the interindividual variation in this trait is genetically determined motivates the application of genetic approaches to the identification of these primary determinants. Success in this effort will afford insights into pathophysiology, permit preclinical identification of subjects with specific inherited susceptibility, and provide opportunities to tailor therapy to specific underlying abnormalities. To date, mutations in three genes have been implicated in the pathogenesis of human hypertension: mutations resulting in ectopic expression of aldosterone synthase enzymatic activity cause a mendelian form of hypertension known as glucocorticoid-remediable aldosteronism; mutations in the beta subunit of the amiloride-sensitive epithelial sodium channel cause constitutive activation of this channel and the mendelian form of hypertension known as Liddle syndrome; finally, common variants at the angiotensinogen locus have been implicated in the pathogenesis of essential hypertension in Caucasian subjects, although the nature of the functional variants and their mechanism of action remain uncertain. These early findings demonstrate the feasibility and utility of the application of genetic analysis to dissection of this trait.
Resumo:
The objective of this research is to present cluster initiative approaches in post industrial regions characterized by similar economic history and challenges, with additional emphasis on their role in promoting innovation among regional businesses. The research is based on a comparison study of two environmental industry clusters: Environmental Technology Cluster (ET) from British West Midlands and ACLIMA from Spanish Basque Country. The study analyzes clusters' design and their role in fostering innovation based on environment industry clusters. In both regions environmental industry clusters represent strong potential for further dynamic development with grow opportunities driven by legislation introduced at EU, national or regional levels. The paper compares clusters' heterogeneity, goals and priorities, financing schemes, management structure, types of projects, character of private-public partnerships, challenges, as well as clusters' collaboration at regional/national/international levels. Also focus is given on how the clusters enhance innovation and what types of projects are executed by the regions in this field.
Resumo:
Sustainable forest restoration and management practices require a thorough understanding of the influence that habitat fragmentation has on the processes shaping genetic variation and its distribution in tree populations. We quantified genetic variation at isozyme markers and chloroplast DNA (cpDNA), analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in severely fragmented populations of Sorbus aucuparia (Rosaceae) in a single catchment (Moffat) in southern Scotland. Remnants maintain surprisingly high levels of gene diversity (H-E) for isozymes (H-E = 0.195) and cpDNA markers (H-E = 0.490). Estimates are very similar to those from non-fragmented populations in continental Europe, even though the latter were sampled over a much larger spatial scale. Overall, no genetic bottleneck or departures from random mating were detected in the Moffat fragments. However, genetic differentiation among remnants was detected for both types of marker (isozymes Theta(n) = 0.043, cpDNA Theta(c) = 0.131; G-test, P-value < 0.001). In this self-incompatible, insect-pollinated, bird-dispersed tree species, the estimated ratio of pollen flow to seed flow between fragments is close to 1 (r = 1.36). Reduced pollen-mediated gene flow is a likely consequence of habitat fragmentation, but effective seed dispersal by birds is probably helping to maintain high levels of genetic diversity within remnants and reduce genetic differentiation between them.
Resumo:
Current opinion contends that complex interactions between genetic and environmental factors play a role in the etiology of Parkinson's disease (PD). Cigarette smoking is thought to reduce risk of PD, and emerging evidence suggests that genetic factors may modulate smoking's effect. We used a case-only design, an approach not previously used to study gene-environment interactions in PD, specifically to study interactions between glutathione-S-transferase (GST) gene polymorphisms and smoking in relation to PD. Four-hundred PD cases (age at onset: 60.0 +/- 10.7 years) were genotyped for common polymorphisms in GSTM1, PI, T1 and Z1 using well-established methods. Smoking exposure data were collected in face-to-face interviews. The independence of the studied GST genotypes and smoking exposure was confirmed by studying 402 healthy, aged individuals. No differences were observed in the distributions of GSTM1, T1 or Z1 polymorphisms between ever-smoked and never-smoked PD cases using logistic regression (all P > 0.43). However, GSTP1 *C haplotypes were over-represented among PD cases who ever smoked (odds ratio for interaction (ORi) = 2.00 (95% Cl: 1.11-3.60, P = 0.03)). Analysis revealed that ORi between smoking and the GSTP1-114Val carrier status increased with increasing smoking dose (P = 0.02 for trend). These data suggest that one or more GSTP1 polymorphisms may interact with cigarette smoking to influence the risk for PD. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
On a viewpoint of gender differences in Cd body burden and its health effects, we reviewed the population- based research including our own which conducted in Japan, Thailand, Australia, Poland, Belgium and Sweden to assess health effects of human exposure to environmental cadmium and their potential mechanisms. As a result, six risk factors in Cd health effects in women have been identified; ( 1) more serious type of renal tubular dysfunction, ( 2) difference in calcium metabolism and its regulatory hormones, ( 3) kidney sensitivity; difference in P450 phenotype, ( 4) pregnancy, ( 5) body iron store status, and ( 6) genetic factors. Further studies of Cd toxicity targeted to women would now appear necessary.
Resumo:
We recently characterized three novel alphaviruses isolated from mosquitoes captured in New South Wales, Australia. Initial cross-neutralization studies revealed antigenic similarity to the Sindbis virus (SINV)-like Whataroa virus (WHAV), heretofore found only in New Zealand. Nucleotide sequence analysis showed that the WHAV-Iike viruses shared >99% nucleotide sequence similarity with each other, and 96-97% similarity with prototype WHAV. Enzyme-linked immunosorbent assay reactions of a panel of monoclonal antibodies to SINV showed that the novel WHAV-Iike viruses displayed identical binding patterns and were antigenically distinct from all SINV isolates examined. Although these viruses displayed a similar binding pattern to prototype WHAV, three monoclonal antibodies discriminated them from the New Zealand virus. Our results suggest that these novel alphaviruses are antigenic variants of WHAV and represent the first reported isolations of this virus from outside New Zealand. The monoclonal antibodies used in this study will be useful for typing new SINV and SINV-like isolates.
Resumo:
Aim To evaluate whether the T1D susceptibility locus on chromosome 16q contributes to the genetic susceptibility to T1D in Russian patients. Method Thirteen microsatellite markers, spanning a 47-centimorgan genomic region on 16q22-q24 were evaluated for linkage to T1D in 98 Russian multiplex families. Multipoint logarithm of odds (LOD) ratio (MLS) and nonparametric LOD (NPL) values were computed for each marker, using GENEHUNTER 2.1 software. Four microsatellites (D16S422, D16S504, D16S3037, and D16S3098) and 6 biallelic markers in 2 positional candidate genes, ICSBP1 and NQO1, were additionally tested for association with T1D in 114 simplex families, using transmission disequilibrium test (TDT). Results A peak of linkage (MLS = 1.35, NPL = 0.91) was shown for marker D16S750, but this was not significant (P = 0.18). The subsequent linkage analysis in the subset of 46 multiplex families carrying a common risk HLA-DR4 haplotype increased peak MLS and NPL values to 1.77 and 1.22, respectively, but showed no significant linkage (P = 0.11) to T1D in the 16q22-q24 genomic region. TDT analysis failed to find significant association between these markers and disease, even after the conditioning for the predisposing HLA-DR4 haplotype. Conclusion Our results did not support the evidence for the susceptibility locus to T1D on chromosome 16q22-24 in the Russian family data set. The lack of association could reflect genetic heterogeneity of type 1 diabetes in diverse ethnic groups.
Resumo:
Genetic control of adventitious rooting was characterised in two unrelated Pinus elliottii x P. caribaea families, an outbred F-1 (n = 287) and an inbred F-2 ( n = 357). Rooting percentage was assessed in three settings and root biomass was measured on a sub-set of clones ( n = 50) from each family in the third setting. On average, clones in the outbred F-1 had a higher rooting percentage (mean +/- SE; 59 +/- 1.9%) and biomass (mean +/- SD; 0.41 +/- 0.24 g) than clones in the inbred F-2 family ( mean +/- SE; 48 +/- 1.8% and mean +/- SD; 0.19 +/- 0.13 g). Genetic determination for rooting percentage was strong in both families, as indicated by high individual setting clonal repeatabilities ( e. g. Setting 3; outbred F-1 0.62 +/- 0.03 and inbred F-2 0.68 +/- 0.02 (H-2 +/- SE)) and the moderate-to-high genetic correlations amongst the three settings. For root biomass, clonal repeatabilities for both families were lower (outbred F-1 0.35 +/- 0.09 and inbred F-2 0.44 +/- 0.10 (H-2 +/- SE)). Weak positive genetic correlations between rooting percentage and root biomass in both families suggested a concomitant gain in root biomass would be insignificant when selecting solely on the more easily assessable rooting percentage.
Resumo:
Adaptation to localised thermal regimes is facilitated by restricted gene flow, ultimately leading to genetic divergence among populations and differences in their physiological tolerances. Allozyme analysis of six polymorphic loci was used to assess genetic differentiation between nine populations of the reef-building coral Acropora millepora over a latitudinal temperature gradient on the inshore regions of the Great Barrier Reef (GBR). Small but significant genetic differentiation indicative of moderate levels of gene flow (pairwise F-ST 0.023 to 0.077) was found between southern populations of A. millepora in cooler regions of the GBR and the warmer, central or northern GBR populations. Patterns of genetic differentiation at these putatively neutral allozyme loci broadly matched experimental variation in thermal tolerance and were consistent with local thermal regimes (warmest monthly-averages) for the A. millepora populations examined. It is therefore hypothesized that natural selection has influenced the thermal tolerance of the A. millepora populations examined and greater genetic divergence is likely to be revealed by examination of genetic markers under the direct effects of natural selection.
Resumo:
An international collection of the sugarcane ratoon stunting disease pathogen, Leifsonia xyli subsp. xyli, was analysed to assess genetic diversity. DNA fingerprinting using BOX primers was performed on 105 isolates, comprising 65 Australian isolates and an additional 40 isolates from Indonesia (n = 8), Japan (n = 1), USA (n = 3), Brazil (n = 2), Mali (n = 2), Zimbabwe (n = 13), South Africa (n = 9) and Reunion (n = 2). Sixty-two of these isolates were also screened using ERIC primers. No variation was found among any of the isolates. The intergenic spacer (IGS) region of the ribosomal RNA genes from 54 isolates was screened for sequence variation using single-stranded conformational polymorphism (SSCP), but none was observed. Direct sequencing of the IGS from a subset of nine isolates, representing all of the countries sampled in this study, confirmed the results of the SSCP analysis. Likewise, no sequence variation was found in the 16S ribosomal RNA genes of the same subset. Four Colombian isolates from sugarcane, morphologically similar to L. xyli subsp. xyli, were putatively shown to be an undescribed Agrococcus species of unknown pathogenicity. The lack of genetic variation among L. xyli subsp. xyli isolates, independent of time of sampling, cultivar of isolation, or country of origin, suggests the worldwide spread of a single pathogenic clone, and further suggests that sugarcane cultivars resistant to ratoon stunting disease in one area should retain this property in other regions.
Resumo:
To survive adverse or unpredictable conditions in the ontogenetic environment, many organisms retain a level of phenotypic plasticity that allows them to meet the challenges of rapidly changing conditions. Larval anurans are widely known for their ability to modify behaviour, morphology and physiological processes during development, making them an ideal model system for studies of environmental effects on phenotypic traits. Although temperature is one of the most important factors influencing the growth, development and metamorphic condition of larval anurans, many studies have failed to include ecologically relevant thermal fluctuations among their treatments. We compared the growth and age at metamorphosis of striped marsh frogs Limnodynastes peronii raised in a diurnally fluctuating thermal regime and a stable regime of the same mean temperature. We then assessed the long-term effects of the larval environment on the morphology and performance of post-metamorphic frogs. Larval L. peronii from the fluctuating treatment were significantly longer throughout development and metamorphosed about 5 days earlier. Frogs from the fluctuating group metamorphosed at a smaller mass and in poorer condition compared with the stable group, and had proportionally shorter legs. Frogs from the fluctuating group showed greater jumping performance at metamorphosis and less degradation in performance during a 10-week dormancy. Treatment differences in performance could not be explained by whole-animal morphological variation, suggesting improved contractile properties of the muscles in the fluctuating group.
Resumo:
Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Phi = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.