893 resultados para fuzzy logic controller
Resumo:
This work is a study of the implementation of a classical controller using a tuning method referred to as IMC (Internal Model Control) and aimed at the reduction of electrical energy consumption by the appropriate relation between energy consumption and the cooling time with forced air. The supervisory system installed was able to manipulate the variable of frequency of the signal power of the exhaust fan engine (forced air module), to accelerate or decelerate the loss of heat from the product to be cooled by airflow variation that passes through the mass of the produce. The results demonstrated a reduction in energy consumption from 64% and an increase of only 8% in the cooling time to the system using PI/IMC (Proportional - Integral with IMC) tuning method compared with the system in its operating nominal condition. This PI/IMC control may be implemented directly in a frequency converter, without the need to purchase a computer or PLC (programmable logic controller) to run the dedicated application, increasing its economical viability.
Resumo:
Suositusmenetelmien tarkoituksena on auttaa käyttäjää löytämään häntä kiinnostavia asioita ja välttämään asioita, joista hän ei pitäisi. Suositusmenetelmät antavat suosituk- set yleensä terävinä lukuina. Tässä työssä kehitetään suositusmenetelmä, joka antaa suo- situkset arvosanojen sumeina jäsenyysasteina. Menetelmän antamat suositukset voidaan myös perustella käyttäjälle. Menetelmä kuuluu pääosin yhteisösuodatusmenetelmiin, jois- sa suositukset tehdään käyttäjien antamien arvosanojen perusteella, mutta myös tietoa elokuvien tyylilajeista hyödynnetään suositustarkkuuden parantamiseksi. Sumeiden suo- situsten suositeltavuusjärjestyksen laskemiseen esitetään myös menetelmä. Käyttäjien elokuville antamat arvosanat voidaan käsittää sumeana datana. Käyttäjä voi kuvata arvosanaa esimerkiksi ilmaisulla ”noin 4”. Tästä syystä on loogista esittää suo- situksetkin sumeina lukuina. Tällöin käyttäjälle voidaan antaa tietoa suosituksen tark- kuudesta ja mahdollisista ristiriidoista. Epävarmojen suositusten tapauksessa käyttäjä voi painottaa enemmän muita tietolähteitä. Kokeiden perusteella kehitetty menetelmä antaa joissa tapauksissa selvästi vertailtavia menetelmiä parempia suosituksia, kun taas toisissa tapauksissa suositukset ovat selvästi heikompia.
Resumo:
Tämä kandityön aihe liittyy LUT Energialla lukuvuonna 2012 – 2013 käynnissä olevaan tutkimukseen, jossa tutkitaan sähkömoottorin laakerivirtojen syntyä. Tätä tutkimusta varten tarvittiin sähkömoottorin etäohjausjärjestelmä, jonka avulla tutkimuksessa käytettävän sähkömoottorin käyttäytymistä voitaisiin tutkia erilaisien käyttöprofiileiden funktiona. Tässä kandityössä suunnitellaan ja toteutetaan edellä kuvattu järjestelmä. Toteutuksessa hyödynnetään nykyaikaista automaatiotekniikkaa, joka yhdessä Ethernet-lähiverkkotekniikan kanssa mahdollistaa etäohjauksen. Valmiin etäohjausjärjestelmän avulla käyttäjä pystyy sekä käynnistämään että sammuttamaan sähkömoottorin, ja määrittämään käyttöprofiilin ON- ja OFF-tilojen ajalliset kestot sekä käyntinopeudet.
Resumo:
Through advances in technology, System-on-Chip design is moving towards integrating tens to hundreds of intellectual property blocks into a single chip. In such a many-core system, on-chip communication becomes a performance bottleneck for high performance designs. Network-on-Chip (NoC) has emerged as a viable solution for the communication challenges in highly complex chips. The NoC architecture paradigm, based on a modular packet-switched mechanism, can address many of the on-chip communication challenges such as wiring complexity, communication latency, and bandwidth. Furthermore, the combined benefits of 3D IC and NoC schemes provide the possibility of designing a high performance system in a limited chip area. The major advantages of 3D NoCs are the considerable reductions in average latency and power consumption. There are several factors degrading the performance of NoCs. In this thesis, we investigate three main performance-limiting factors: network congestion, faults, and the lack of efficient multicast support. We address these issues by the means of routing algorithms. Congestion of data packets may lead to increased network latency and power consumption. Thus, we propose three different approaches for alleviating such congestion in the network. The first approach is based on measuring the congestion information in different regions of the network, distributing the information over the network, and utilizing this information when making a routing decision. The second approach employs a learning method to dynamically find the less congested routes according to the underlying traffic. The third approach is based on a fuzzy-logic technique to perform better routing decisions when traffic information of different routes is available. Faults affect performance significantly, as then packets should take longer paths in order to be routed around the faults, which in turn increases congestion around the faulty regions. We propose four methods to tolerate faults at the link and switch level by using only the shortest paths as long as such path exists. The unique characteristic among these methods is the toleration of faults while also maintaining the performance of NoCs. To the best of our knowledge, these algorithms are the first approaches to bypassing faults prior to reaching them while avoiding unnecessary misrouting of packets. Current implementations of multicast communication result in a significant performance loss for unicast traffic. This is due to the fact that the routing rules of multicast packets limit the adaptivity of unicast packets. We present an approach in which both unicast and multicast packets can be efficiently routed within the network. While suggesting a more efficient multicast support, the proposed approach does not affect the performance of unicast routing at all. In addition, in order to reduce the overall path length of multicast packets, we present several partitioning methods along with their analytical models for latency measurement. This approach is discussed in the context of 3D mesh networks.
Resumo:
Rakennusautomaatiossa tulee esiin sovelluksia, joissa järjestelmän ohjaus-, säätö- tai valvontaratkaisun toteuttaminen ohjelmoitavilla logiikoilla ei ole riittävän edullista. Tällöin vaihtoehtona on oman laitteen suunnittelu. Työn tavoitteena oli suunnitella ja toteuttaa kustannustehokas CAN-väylään liitettävä vapaasti ohjelmoitava automaatioyksikkö. Suunnittelua ohjasivat asiakkaan laatimat vaatimusmäärittelyt. Niistä laitteen konfigurointimahdollisuudet ja piirilevyn tavoitekoko asettivat suurimmat haasteet laitteen suunnittelulle. Työn tuloksena toteutettiin asiakkaan tarpeisiin soveltuva automaatioyksikkö. Tavoitteisiin päästiin komponenttivalinnoilla ja hyödyntämällä tehokkaasti mikro-ohjaimen integroituja ominaisuuksia. Näiden avulla pystyttiin karsimaan monia yksiköitä, joita tavanomaisesti toteutetaan erilliskomponenteilla. Työssä perehdyttiin sulautetun järjestelmän elektroniikan tuotekehitysprosessiin ideasta prototyyppiin. Samalla on kuvailtu valittuja ratkaisuja sekä suunnittelussa tapahtuneita virheitä ja miten ne on ratkaistu.
Resumo:
Linguistic modelling is a rather new branch of mathematics that is still undergoing rapid development. It is closely related to fuzzy set theory and fuzzy logic, but knowledge and experience from other fields of mathematics, as well as other fields of science including linguistics and behavioral sciences, is also necessary to build appropriate mathematical models. This topic has received considerable attention as it provides tools for mathematical representation of the most common means of human communication - natural language. Adding a natural language level to mathematical models can provide an interface between the mathematical representation of the modelled system and the user of the model - one that is sufficiently easy to use and understand, but yet conveys all the information necessary to avoid misinterpretations. It is, however, not a trivial task and the link between the linguistic and computational level of such models has to be established and maintained properly during the whole modelling process. In this thesis, we focus on the relationship between the linguistic and the mathematical level of decision support models. We discuss several important issues concerning the mathematical representation of meaning of linguistic expressions, their transformation into the language of mathematics and the retranslation of mathematical outputs back into natural language. In the first part of the thesis, our view of the linguistic modelling for decision support is presented and the main guidelines for building linguistic models for real-life decision support that are the basis of our modeling methodology are outlined. From the theoretical point of view, the issues of representation of meaning of linguistic terms, computations with these representations and the retranslation process back into the linguistic level (linguistic approximation) are studied in this part of the thesis. We focus on the reasonability of operations with the meanings of linguistic terms, the correspondence of the linguistic and mathematical level of the models and on proper presentation of appropriate outputs. We also discuss several issues concerning the ethical aspects of decision support - particularly the loss of meaning due to the transformation of mathematical outputs into natural language and the issue or responsibility for the final decisions. In the second part several case studies of real-life problems are presented. These provide background and necessary context and motivation for the mathematical results and models presented in this part. A linguistic decision support model for disaster management is presented here – formulated as a fuzzy linear programming problem and a heuristic solution to it is proposed. Uncertainty of outputs, expert knowledge concerning disaster response practice and the necessity of obtaining outputs that are easy to interpret (and available in very short time) are reflected in the design of the model. Saaty’s analytic hierarchy process (AHP) is considered in two case studies - first in the context of the evaluation of works of art, where a weak consistency condition is introduced and an adaptation of AHP for large matrices of preference intensities is presented. The second AHP case-study deals with the fuzzified version of AHP and its use for evaluation purposes – particularly the integration of peer-review into the evaluation of R&D outputs is considered. In the context of HR management, we present a fuzzy rule based evaluation model (academic faculty evaluation is considered) constructed to provide outputs that do not require linguistic approximation and are easily transformed into graphical information. This is achieved by designing a specific form of fuzzy inference. Finally the last case study is from the area of humanities - psychological diagnostics is considered and a linguistic fuzzy model for the interpretation of outputs of multidimensional questionnaires is suggested. The issue of the quality of data in mathematical classification models is also studied here. A modification of the receiver operating characteristics (ROC) method is presented to reflect variable quality of data instances in the validation set during classifier performance assessment. Twelve publications on which the author participated are appended as a third part of this thesis. These summarize the mathematical results and provide a closer insight into the issues of the practicalapplications that are considered in the second part of the thesis.
Resumo:
Acid sulfate (a.s.) soils constitute a major environmental issue. Severe ecological damage results from the considerable amounts of acidity and metals leached by these soils in the recipient watercourses. As even small hot spots may affect large areas of coastal waters, mapping represents a fundamental step in the management and mitigation of a.s. soil environmental risks (i.e. to target strategic areas). Traditional mapping in the field is time-consuming and therefore expensive. Additional more cost-effective techniques have, thus, to be developed in order to narrow down and define in detail the areas of interest. The primary aim of this thesis was to assess different spatial modeling techniques for a.s. soil mapping, and the characterization of soil properties relevant for a.s. soil environmental risk management, using all available data: soil and water samples, as well as datalayers (e.g. geological and geophysical). Different spatial modeling techniques were applied at catchment or regional scale. Two artificial neural networks were assessed on the Sirppujoki River catchment (c. 440 km2) located in southwestern Finland, while fuzzy logic was assessed on several areas along the Finnish coast. Quaternary geology, aerogeophysics and slope data (derived from a digital elevation model) were utilized as evidential datalayers. The methods also required the use of point datasets (i.e. soil profiles corresponding to known a.s. or non-a.s. soil occurrences) for training and/or validation within the modeling processes. Applying these methods, various maps were generated: probability maps for a.s. soil occurrence, as well as predictive maps for different soil properties (sulfur content, organic matter content and critical sulfide depth). The two assessed artificial neural networks (ANNs) demonstrated good classification abilities for a.s. soil probability mapping at catchment scale. Slightly better results were achieved using a Radial Basis Function (RBF) -based ANN than a Radial Basis Functional Link Net (RBFLN) method, narrowing down more accurately the most probable areas for a.s. soil occurrence and defining more properly the least probable areas. The RBF-based ANN also demonstrated promising results for the characterization of different soil properties in the most probable a.s. soil areas at catchment scale. Since a.s. soil areas constitute highly productive lands for agricultural purpose, the combination of a probability map with more specific soil property predictive maps offers a valuable toolset to more precisely target strategic areas for subsequent environmental risk management. Notably, the use of laser scanning (i.e. Light Detection And Ranging, LiDAR) data enabled a more precise definition of a.s. soil probability areas, as well as the soil property modeling classes for sulfur content and the critical sulfide depth. Given suitable training/validation points, ANNs can be trained to yield a more precise modeling of the occurrence of a.s. soils and their properties. By contrast, fuzzy logic represents a simple, fast and objective alternative to carry out preliminary surveys, at catchment or regional scale, in areas offering a limited amount of data. This method enables delimiting and prioritizing the most probable areas for a.s soil occurrence, which can be particularly useful in the field. Being easily transferable from area to area, fuzzy logic modeling can be carried out at regional scale. Mapping at this scale would be extremely time-consuming through manual assessment. The use of spatial modeling techniques enables the creation of valid and comparable maps, which represents an important development within the a.s. soil mapping process. The a.s. soil mapping was also assessed using water chemistry data for 24 different catchments along the Finnish coast (in all, covering c. 21,300 km2) which were mapped with different methods (i.e. conventional mapping, fuzzy logic and an artificial neural network). Two a.s. soil related indicators measured in the river water (sulfate content and sulfate/chloride ratio) were compared to the extent of the most probable areas for a.s. soils in the surveyed catchments. High sulfate contents and sulfate/chloride ratios measured in most of the rivers demonstrated the presence of a.s. soils in the corresponding catchments. The calculated extent of the most probable a.s. soil areas is supported by independent data on water chemistry, suggesting that the a.s. soil probability maps created with different methods are reliable and comparable.
Resumo:
The present work deals with the A study of morphological opertors with applications. Morphology is now a.necessary tool for engineers involved with imaging applications. Morphological operations have been viewed as filters the properties of which have been well studied (Heijmans, 1994). Another well-known class of non-linear filters is the class of rank order filters (Pitas and Venetsanopoulos, 1990). Soft morphological filters are a combination of morphological and weighted rank order filters (Koskinen, et al., 1991, Kuosmanen and Astola, 1995). They have been introduced to improve the behaviour of traditional morphological filters in noisy environments. The idea was to slightly relax the typical morphological definitions in such a way that a degree of robustness is achieved, while most of the desirable properties of typical morphological operations are maintained. Soft morphological filters are less sensitive to additive noise and to small variations in object shape than typical morphological filters. They can remove positive and negative impulse noise, preserving at the same time small details in images. Currently, Mathematical Morphology allows processing images to enhance fuzzy areas, segment objects, detect edges and analyze structures. The techniques developed for binary images are a major step forward in the application of this theory to gray level images. One of these techniques is based on fuzzy logic and on the theory of fuzzy sets.Fuzzy sets have proved to be strongly advantageous when representing in accuracies, not only regarding the spatial localization of objects in an image but also the membership of a certain pixel to a given class. Such inaccuracies are inherent to real images either because of the presence of indefinite limits between the structures or objects to be segmented within the image due to noisy acquisitions or directly because they are inherent to the image formation methods.
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
Microarray data analysis is one of data mining tool which is used to extract meaningful information hidden in biological data. One of the major focuses on microarray data analysis is the reconstruction of gene regulatory network that may be used to provide a broader understanding on the functioning of complex cellular systems. Since cancer is a genetic disease arising from the abnormal gene function, the identification of cancerous genes and the regulatory pathways they control will provide a better platform for understanding the tumor formation and development. The major focus of this thesis is to understand the regulation of genes responsible for the development of cancer, particularly colorectal cancer by analyzing the microarray expression data. In this thesis, four computational algorithms namely fuzzy logic algorithm, modified genetic algorithm, dynamic neural fuzzy network and Takagi Sugeno Kang-type recurrent neural fuzzy network are used to extract cancer specific gene regulatory network from plasma RNA dataset of colorectal cancer patients. Plasma RNA is highly attractive for cancer analysis since it requires a collection of small amount of blood and it can be obtained at any time in repetitive fashion allowing the analysis of disease progression and treatment response.
Resumo:
Se basa en un análisis teórico de los sistemas de información como lo es el almacenaje de datos, cubos OLAP e inteligencia de negocios. Seguidamente, se hace un análisis de los sectores económicos de Colombia con un especial interés sobre el sector de alimentos, de esta manera conceptualizar la empresa sobre la cual este trabajo se enfocara. Se encontrará un análisis del caso de éxito Summerwood Corporation, el cual brindará una justificación para la propuesta final presentada a la empresa Dipsa Food, Pyme dedicada a la producción de alimentos no perecederos ubicada en la ciudad de Bogotá D.C –Colombia, la cual tiene gran interés en cuanto al desarrollo de nuevas tecnologías que brinden información fidedigna para la toma de decisiones
Resumo:
Este documento se centra en la presentación de información y análisis de la misma a la hora de establecer la manera en que empresas del sector de extracción de gas natural y generación de energía a base de dicho recurso, toman decisiones en cuanto a inversión, centrándose en la lógica que usan a la hora de emprender este proceso. Esto debido a la constante necesidad de establecer procesos que permitan tomar decisiones más acertadas, incluyendo todas las herramientas posibles para tal fin. La lógica es una de estas herramientas, pues permite encadenar factores con el fin de obtener resultados positivos. Por tal razón, se hace importante conocer el uso de esta herramienta, teniendo en cuentas de qué manera y en que contextos es usada. Con el fin de tener una mayor orientación, este estudio estará centrado en un sector específico, el cual es el de la extracción de petróleo y gas natural. Lo anterior entendiendo la necesidad existente de fundamentación teórica que permita establecer de manera clara la forma apropiada de tomar decisiones en un sector tan diverso y complejo como lo es el mencionado. El contexto empresarial actual exige una visión global, no basada en la lógica lineal causal que hoy se tiene como referencia. El sector de extracción de petróleo y gas natural es un ejemplo particular en cuanto a la manera en cuanto se toman decisiones en inversión, puesto que en su mayoría son empresas de capital intensivo, las cuales mantienen un flujo elevado de recursos monetarios.
Resumo:
Para el administrador el proceso de la toma de decisiones es uno de sus mayores retos y responsabilidades, ya que en su desarrollo se debe definir el camino más acertado en un sin número de alternativas, teniendo en cuenta los obstáculos sociales, políticos y económicos del entorno empresarial. Para llegar a la decisión adecuada no hay que perder de vista los objetivos y metas propuestas, además de tener presente el proceso lógico, detectando, analizando y demostrando el porqué de esa elección. Consecuentemente el análisis que propone esta investigación aportara conocimientos sobre los tipos de lógica utilizados en la toma de decisiones estratégicas al administrador para satisfacer las demandas asociadas con el mercadeo para que de esta manera se pueda generar y ampliar eficientemente las competencia idóneas del administrador en la inserción internacional de un mercado laboral cada vez mayor (Valero, 2011). A lo largo de la investigación se pretende desarrollar un estudio teórico para explicar la relación entre la lógica y la toma de decisiones estratégicas de marketing y como estos conceptos se combinan para llegar a un resultado final. Esto se llevara a cabo por medio de un análisis de planes de marketing, iniciando por conceptos básicos como marketing, lógica, decisiones estratégicas, dirección de marketing seguido de los principios lógicos y contradicciones que se pueden llegar a generar entre la fundamentación teórica
Resumo:
Aquesta memòria està estructurada en sis capítols amb l'objectiu final de fonamentar i desenvolupar les eines matemàtiques necessàries per a la classificació de conjunts de subconjunts borrosos. El nucli teòric del treball el formen els capítols 3, 4 i 5; els dos primers són dos capítols de caire més general, i l'últim és una aplicació dels anteriors a la classificació dels països de la Unió Europea en funció de determinades característiques borroses. En el capítol 1 s'analitzen les diferents connectives borroses posant una especial atenció en aquells aspectes que en altres capítols tindran una aplicació específica. És per aquest motiu que s'estudien les ordenacions de famílies de t-normes, donada la seva importància en la transitivitat de les relacions borroses. La verificació del principi del terç exclòs és necessària per assegurar que un conjunt significatiu de mesures borroses generalitzades, introduïdes en el capítol 3, siguin reflexives. Estudiem per a quines t-normes es verifica aquesta propietat i introduïm un nou conjunt de t-normes que verifiquen aquest principi. En el capítol 2 es fa un recorregut general per les relacions borroses centrant-nos en l'estudi de la clausura transitiva per a qualsevol t-norma, el càlcul de la qual és en molts casos fonamental per portar a terme el procés de classificació. Al final del capítol s'exposa un procediment pràctic per al càlcul d'una relació borrosa amb l'ajuda d'experts i de sèries estadístiques. El capítol 3 és un monogràfic sobre mesures borroses. El primer objectiu és relacionar les mesures (o distàncies) usualment utilitzades en les aplicacions borroses amb les mesures conjuntistes crisp. Es tracta d'un enfocament diferent del tradicional enfocament geomètric. El principal resultat és la introducció d'una família parametritzada de mesures que verifiquen unes propietats de caràcter conjuntista prou satisfactòries. L'estudi de la verificació del principi del terç exclòs té aquí la seva aplicació sobre la reflexivitat d'aquestes mesures, que són estudiades amb una certa profunditat en alguns casos particulars. El capítol 4 és, d'entrada, un repàs dels principals resultats i mètodes borrosos per a la classificació dels elements d'un mateix conjunt de subconjunts borrosos. És aquí on s'apliquen els resultats sobre les ordenacions de les famílies de t-normes i t-conormes estudiades en el capítol 1. S'introdueix un nou mètode de clusterització, canviant la matriu de la relació borrosa cada vegada que s'obté un nou clúster. Aquest mètode permet homogeneïtzar la metodologia del càlcul de la relació borrosa amb el mètode de clusterització. El capítol 5 tracta sobre l'agrupació d'objectes de diferent naturalesa; és a dir, subconjunts borrosos que pertanyen a diferents conjunts. Aquesta teoria ja ha estat desenvolupada en el cas binari; aquí, el que es presenta és la seva generalització al cas n-ari. Més endavant s'estudien certs aspectes de les projeccions de la relació sobre un cert espai i el recíproc, l'estudi de cilindres de relacions predeterminades. Una aplicació sobre l'agrupació de les comarques gironines en funció de certes variables borroses es presenta al final del capítol. L'últim capítol és eminentment pràctic, ja que s'aplica allò estudiat principalment en els capítols 3 i 4 a la classificació dels països de la Unió Europea en funció de determinades característiques borroses. Per tal de fer previsions per a anys venidors s'han utilitzat sèries temporals i xarxes neuronals. S'han emprat diverses mesures i mètodes de clusterització per tal de poder comparar els diversos dendogrames que resulten del procés de clusterització. Finalment, als annexos es poden consultar les sèries estadístiques utilitzades, la seva extrapolació, els càlculs per a la construcció de les matrius de les relacions borroses, les matrius de mesura i les seves clausures.