790 resultados para fund performance evaluation
Resumo:
Com o aumento constante de procura de recursos naturais por parte dos vários setores da sociedade é urgente encontrar soluções para reduzir o seu consumo sem se travar a expansão demográfica que se tem vindo a sentir nos grandes centros urbanos. É através da implementação de medidas de sustentabilidade e pelo aumento da eficiência de utilização desses recursos que se tem vindo a combater esta tendência cada vez maior de consumismo global, sendo isto apenas possível com a implementação de ferramentas tecnológicas avançadas que permitem estabelecer limites ao considerado eficiente e premiando, em termos financeiros e de imagem de marketing, as entidades que o alcancem. O LEED é um sistema de certificação de sustentabilidade voluntário de edifícios residenciais e comerciais que estabelece métricas de comparação de parâmetros indicadores de consumos energéticos, hídricos e de materiais em todo o ciclo de vida do edifício e que tem vindo a ganhar destaque em crescendo a nível mundial. Esta dissertação teve como objetivo comparar a performance de consumo energético no âmbito do sistema LEED com a do sistema de certificação energética de edifícios nacional (SCE) de um grande edifício de serviços, estabelecendo um paralelismo de semelhanças e diferenças entre os dois e de avaliar os efeitos de potenciais medidas de eficiência energética e seus efeitos nas classificações de mérito obtidas em cada sistema. Os resultados obtidos na simulação que permitiu avaliar a performance foi muito satisfatório, tendo sido aproveitado pela empresa para efeitos de certificação LEED do edifício em estudo.
Resumo:
O aumento da carga física do jogo de futebol provocou uma maior exigência e desenvolvimento na condição física dos jogadores e por inerência, nos árbitros. Assim o presente estudo procurou identificar e desenvolver um teste para a avaliação dos árbitros de futebol. Foi realizada uma análise sistemática para identificação e descrição da produção científica na área da arbitragem no sentido de sustentar o argumento de insuficiência dos testes vigentes e propor o novo teste que denominámos ETSOR. Após esta, foi realizada uma aplicação piloto com recurso ao método de estudo de caso para testagem do ETSOR. Os resultados revelaram que existe uma dispersão nas formas e conteúdos abordados face à caracterização do árbitro de futebol de 11. A partir do método de meta-análise, é apresentada uma proposta de categorização dos conteúdos. Os resultados revelaram também que o teste FIFA não identifica as intensidades irregulares que decorrem das situações do jogo, nem representa a uma distribuição das intensidades dos esforços dos árbitros nas situações de jogo. O Teste ETSOR, como teste ecológico, capta em termos de densidade, de distribuição, de variação da potência e de resistência, os esforços dos árbitros nas situações de jogo, como testa a características das intensidades máximas da atividade do árbitro. Por último, os resultados reforçaram que este processo que se deve estender de forma periodizada ao longo de cada época tornando-se útil, na medida em que permite a otimização e monitorização da prestação do árbitro.
Resumo:
Over the last few years, football entered in a period of accelerated access to large amount of match analysis data. Social networks have been adopted to reveal the structure and organization of the web of interactions, such as the players passing distribution tendencies. In this study we investigated the influence of ball possession characteristics in the competitive success of Spanish La Liga teams. The sample was composed by OPTA passing distribution raw data (n=269,055 passes) obtained from 380 matches involving all the 20 teams of the 2012/2013 season. Then, we generated 760 adjacency matrixes and their corresponding social networks using Node XL software. For each network we calculated three team performance measures to evaluate ball possession tendencies: graph density, average clustering and passing intensity. Three levels of competitive success were determined using two-step cluster analysis based on two input variables: the total points scored by each team and the scored per conceded goals ratio. Our analyses revealed significant differences between competitive performances on all the three team performance measures (p < .001). Bottom-ranked teams had less number of connected players (graph density) and triangulations (average clustering) than intermediate and top-ranked teams. However, all the three clusters diverged in terms of passing intensity, with top-ranked teams having higher number of passes per possession time, than intermediate and bottom-ranked teams. Finally, similarities and dissimilarities in team signatures of play between the 20 teams were displayed using Cohen’s effect size. In sum, findings suggest the competitive performance was influenced by the density and connectivity of the teams, mainly due to the way teams use their possession time to give intensity to their game.
Resumo:
A vast amount of research into autonomous underwater navigation has, and is, being conducted around the world. However, typical research and commercial platforms have limited autonomy and are generally unable to navigate efficiently within coral reef environments without tethers and significant external infrastructure. This paper outlines the development and presents experimental results into the performance evaluation of a new robotic vehicle for underwater monitoring and surveying in highly unstructured environments. The hybrid AUV design developed by the CSIRO robotic reef monitoring team realises a compromise between endurance, manoeuvrability and functionality. The vehicle represents a new era in AUV design specifically focused at providing a truly lowcost research capability that will progress environmental monitoring through unaided navigation, cooperative robotics, sensor network distribution and data harvesting.
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
In the Superannuation/Pension industry ordinary investors entrust their retirement savings to the trustees of the superannuation plan. Investors rely on the trustees to ensure ethical business and risk management practices are implemented to protect their retirement savings. Governance practices ensure the monitoring of ethical risk management (Drennan, 2004). The Australian superannuation industry presents a unique scenario. Legislation requires employers to contribute a minimum of 9% of the employees wage to retirement savings. However, there are no legislated governance standards, although there are standards of recommended governance practices. In this paper, we examine the level of voluntary adoption of governance practices by the trustees of Australian public sector and industry superannuation funds. We also assess whether superannuation governance practices are associated with performance and volatility/riskiness of returns. Survey results show that the majority of superannuation plans adopt recommended governance practices supporting the concept of ethical management of the member’s retirement savings. The examination of governance principles that impact returns and risk show that board size and regular review of conflicts are positively associated with return. Superannuation plans with higher volatility in returns meet more frequently.
Resumo:
Popular wireless network standards, such as IEEE 802.11/15/16, are increasingly adopted in real-time control systems. However, they are not designed for real-time applications. Therefore, the performance of such wireless networks needs to be carefully evaluated before the systems are implemented and deployed. While efforts have been made to model general wireless networks with completely random traffic generation, there is a lack of theoretical investigations into the modelling of wireless networks with periodic real-time traffic. Considering the widely used IEEE 802.11 standard, with the focus on its distributed coordination function (DCF), for soft-real-time control applications, this paper develops an analytical Markov model to quantitatively evaluate the network quality-of-service (QoS) performance in periodic real-time traffic environments. Performance indices to be evaluated include throughput capacity, transmission delay and packet loss ratio, which are crucial for real-time QoS guarantee in real-time control applications. They are derived under the critical real-time traffic condition, which is formally defined in this paper to characterize the marginal satisfaction of real-time performance constraints.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
It is recognized that, in general, the performance of construction projects does not meet optimal expectations. One aspect of this is the performance of each participant, which is interdependent and makes a significance impact on overall project outcomes. Of these, the client is traditionally the owner of the project, the architect or engineer is engaged as the lead designer and a contractor is selected to construct the facilities. Generally, the performance of the participants is gauged by considering three main factors, namely time, cost and quality. As the level of satisfaction is a subjective measurement, it is rarely used in the performance evaluation of construction work. Recently, various approaches to the measurement of satisfaction have been made in attempting to determine the performance of construction project outcomes – for instance client satisfaction, consultant satisfaction, contractor satisfaction, customer satisfaction and home buyer satisfaction. These not only identify the performance of the construction project, but are also used to improve and maintain relationships. In addition, these assessments are necessary for continuous improvement and enhanced cooperation between participants. The measurement of satisfaction levels primarily involves expectations and perceptions. An expectation can be regarded as a comparison standard of different needs, motives and beliefs, while a perception is a subjective interpretation that is influenced by moods, experiences and values. This suggests that the disparity between perceptions and expectations may be used to represent different levels of satisfaction. However, this concept is rather new and in need of further investigation. This paper examines the current methods commonly practiced in measuring satisfaction level and the advantages of promoting these methods. The results provided are a preliminary review of the advantages of satisfaction measurement in the construction industry and recommendations are made concerning the most appropriate methods for use in identifying the performance of project outcomes.
Resumo:
In vitro cardiovascular device performance evaluation in a mock circulation loop (MCL) is a necessary step prior to in vivo testing.A MCL that accurately represents the physiology of the cardiovascular system accelerates the assessment of the device’s ability to treat pathological conditions. To serve this purpose, a compact MCL measuring 600 ¥ 600 ¥ 600 mm (L ¥ W¥ H) was constructed in conjunction with a computer mathematical simulation.This approach allowed the effective selection of physical loop characteristics, such as pneumatic drive parameters, to create pressure and flow, and pipe dimensions to replicate the resistance, compliance, and fluid inertia of the native cardiovascular system. The resulting five-element MCL reproduced the physiological hemodynamics of a healthy and failing heart by altering ventricle contractility, vascular resistance/compliance, heart rate, and vascular volume. The effects of interpatient anatomical variability, such as septal defects and valvular disease, were also assessed. Cardiovascular hemodynamic pressures (arterial, venous, atrial, ventricular), flows (systemic, bronchial, pulmonary), and volumes (ventricular, stroke) were analyzed in real time. The objective of this study is to describe the developmental stages of the compact MCL and demonstrate its value as a research tool for the accelerated development of cardiovascular devices.
Resumo:
IEC Technical Committee 57 (TC57) published a series of standards and technical reports for “Communication networks and systems for power utility automation” as the IEC 61850 series. Sampled value (SV) process buses allow for the removal of potentially lethal voltages and damaging currents inside substation control rooms and marshalling kiosks, reduce the amount of cabling required in substations, and facilitate the adoption of non-conventional instrument transformers. IEC 61850-9-2 provides an inter-operable solution to support multi-vendor process bus solutions. A time synchronisation system is required for a SV process bus, however the details are not defined in IEC 61850-9-2. IEEE Std 1588-2008, Precision Time Protocol version 2 (PTPv2), provides the greatest accuracy of network based time transfer systems, with timing errors of less than 100 ns achievable. PTPv2 is proposed by the IEC Smart Grid Strategy Group to synchronise IEC 61850 based substation automation systems. IEC 61850-9-2, PTPv2 and Ethernet are three complementary protocols that together define the future of sampled value digital process connections in substations. The suitability of PTPv2 for use with SV is evaluated, with preliminary results indicating that steady state performance is acceptable (jitter < 300 ns), and that extremely stable grandmaster oscillators are required to ensure SV timing requirements are met when recovering from loss of external synchronisation (such as GPS).