951 resultados para frontal sinus
Resumo:
Many mental disorders disrupt social skills, yet few studies have examined how the brain processes social information. Functional neuroimaging, neuroconnectivity and electrophysiological studies suggest that orbital frontal cortex plays important roles in social cognition, including the analysis of information from faces, which are important cues in social interactions. Studies in humans and non-human primates show that damage to orbital frontal cortex produces social behavior impairments, including abnormal aggression, but these studies have failed to determine whether damage to this area impairs face processing. In addition, it is not known whether damage early in life is more detrimental than damage in adulthood. This study examined whether orbital frontal cortex is necessary for the discrimination of face identity and facial expressions, and for appropriate behavioral responses to aggressive (threatening) facial expressions. Rhesus monkeys (Macaca mulatta) received selective lesions of orbital frontal cortex as newborns or adults. As adults, these animals were compared with sham-operated controls on their ability to discriminate between faces of individual monkeys and between different facial expressions of emotion. A passive visual paired-comparison task with standardized rhesus monkey face stimuli was designed and used to assess discrimination. In addition, looking behavior toward aggressive expressions was assessed and compared with that of normal control animals. The results showed that lesion of orbital frontal cortex (1) may impair discrimination between faces of individual monkeys, (2) does not impair facial expression discrimination, and (3) changes the amount of time spent looking at aggressive (threatening) facial expressions depending on the context. The effects of early and late lesions did not differ. Thus, orbital frontal cortex appears to be part of the neural circuitry for recognizing individuals and for modulating the response to aggression in faces, and the plasticity of the immature brain does not allow for recovery of these functions when the damage occurs early in life. This study opens new avenues for the assessment of rhesus monkey face processing and the neural basis of social cognition, and allows a better understanding of the nature of the neuropathology in patients with mental disorders that disrupt social behavior, such as autism. ^
Resumo:
Vertical distribution of meso- and macroplankton was studied in the region of the most sharply pronounced climatic frontal zone between the Gulf Stream and the Labrador current. Hauls with a plankton net BR 113/140 and visual counts of macroplankton from the Mir submersible were used. In the frontal zone a contact occurs between arctic-boreal communities and communities of the North Atlantic subtropical gyre. The community of the North Atlantic subtropical gyre is more mature in terms of succession; many macroplanktonic carnivores-scavengers (mainly shrimps Acanthephyra) develop there and form a ''living network'' feeding on those transported from the north rich arctic-boreal mesoplankton. As a result biomass of shrimps appears to be significantly higher than biomass of their preys. Peculiarities of vertical distribution and population structure of shrimps were analyzed. Data on quantitative vertical distribution of total biomass of meso- and macroplankton and its principal groups, including gelatinous animals (ctenophores, medusas, and siphonophores) were obtained. Variations of the role of different plankton groups with depth were considered; these data enable a conclusion that frontal variations of the community structure embrace the depth range from the surface down to 2000 m.
Resumo:
We assessed relationships between phytoplankton standing stock, measured as chlorophyll a (Chl a), primary production (PP), and heterotrophic picoplankton production (HPP), in the epipelagic zone (0-100 m) as well as in the mesopelagic zone (100-1,000 m) in the polar frontal zone of the Atlantic sector of the Southern Ocean in austral summer (late December to January) and fall (March to early May). Integrated epipelagic HPP was positively correlated to integrated PP in summer (data for fall are not available) but not to integrated Chl a. However, integrated mesopelagic HPP was positively correlated to Chl a in summer as well as fall. The mesopelagic fraction of HPP as a percentage of total HPP was also positively correlated to Chl a, whereas the epipelagic fraction of HPP was negatively correlated to it. These results indicate that with increasing phytoplankton standing stock, constituted mainly of highly silicified diatoms, the focus of its consumption by heterotrophic picoplankton shifts from epipelagic to mesopelagic waters. With a growth efficiency of 30%, our HPP data indicate that in both the epipelagic and mesopelagic zone heterotrophic picoplankton consume 20% of PP. Mesopelagic heterotrophic picoplankton consumed around 80% of the sinking flux, measured from depletion of 234Th, which is a lower fraction than that reported from the central and subarctic Pacific. Our analysis indicates that it is important to include mesopelagic HPP in comprehensive assessments of the microbial consumption of PP, phytoplankton biomass, and particulate organic matter in cold oceanic systems with high rates of export production.