885 resultados para flow-through cell
Resumo:
Suspension aquaculture of filter-feeding bivalves has been developing rapidly in coastal waters in the world, especially in China. Previous studies have demonstrated that dense populations of filter-feeding bivalves in shallow water can produce a large amount of faeces and pseudofaeces (biodeposits) that may lead to negative impacts on the benthic environment. To determine whether the deposit feeder Stichopus (Apostichopus) japonicus Selenka can feed on bivalve biodeposits and whether the sea cucumber can be co-cultured with bivalves in suspended lantern nets, three experiments were conducted, two in tanks in the laboratory and one in the field. In a 3-month flow-through experiment, results showed that sea cucumbers grew well with specific growth rate (SGR) reaching 1.38% d(-1), when cultured in the bottom of tanks (10 m(3) water volume) where scallops were cultured in suspension in lantern nets. Moreover, results of another laboratory experiment demonstrated that sea cucumbers could survive well on bivalve biodeposits, with a feeding rate of 1.82 +/- 0.13 g dry biodeposits ind(-1) d(-1), absorption efficiency of organic matter in biodeposits of 17.2% +/- 5.5%, and average SGR of 1.60% d(-1). Our longer-term field experiments in two coastal bays (Sishili Bay and Jiaozhou Bay, northern China) showed that S. japonicus co-cultured with bivalves also grew well at growth rates (0.09-0.31 g wet weight ind(-1) d(-1)) depending on individual size. The results suggest that bivalve lantern nets can provide a good habitat for sea cucumbers; and the co-culture of bivalve molluscs with sea cucumbers may provide an additional valuable crop with no additional inputs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Planktonic microbial community structure and classical food web were investigated in the large shallow eutrophic Lake Taihu (2338 km(2), mean depth 1.9 m) located in subtropical Southeast China. The water column of the lake was sampled biweekly at two sites located 22 km apart over a period of twelve month. Site 1 is under the regime of heavy eutrophication while Site 2 is governed by wind-driven sediment resuspension. Within-lake comparison indicates that phosphorus enrichment resulted in increased abundance of microbial components. However, the coupling between total phosphorus and abundance of microbial components was different between the two sites. Much stronger coupling was observed at Site 1 than at Site 2. The weak coupling at Site 2 was mainly caused by strong sediment resuspension, which limited growth of phytoplankton and, consequently, growth of bacterioplankton and other microbial components. High percentages of attached bacteria, which were strongly correlated with the biomass of phytoplankton, especially Microcystis spp., were found at Site 1 during summer and early autumn, but no such correlation was observed at Site 2. This potentially leads to differences in carbon flow through microbial food web at different locations. Overall, significant heterogeneity of microbial food web structure between the two sites was observed. Site-specific differences in nutrient enrichment (i.e. nitrogen and phosphorus) and sediment resuspension were identified as driving forces of the observed intra-habitat differences in food web structure.
Resumo:
The disjunct distribution of forests in the Qinghai-Tibetan Plateau (QTP) and adjacent Helan Shan and Daqing Shan highlands provides an excellent model to examine vegetation shifts, glacial refugia and gene flow of key species in this complex landscape region in response to past climatic oscillations and human disturbance. In this study, we examined maternally inherited mitochondrial DNA (nad1 intron b/c and nad5 intron 1) and paternally inherited chloroplast DNA (trnC-trnD) sequence variation within a dominant forest species, Picea crassifolia Kom. We recovered nine mitotypes and two chlorotypes in a survey of 442 individuals from 32 populations sampled throughout the species' range. Significant mitochondrial DNA population subdivision was detected (G(ST) = 0.512; N-ST = 0.679), suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (N-ST > GST, P < 0.05). Plateau haplotypes differed in sequence from those in the adjacent highlands, suggesting a long period of allopatric fragmentation between the species in the two regions and the presence of independent refugia in each region during Quaternary glaciations. On the QTP platform, all but one of the disjunct populations surveyed were fixed for the same mitotype, while most populations at the plateau edge contained more than one haplotype with the mitotype that was fixed in plateau platform populations always present at high frequency. This distribution pattern suggests that present-day disjunct populations on the QTP platform experienced a common recolonization history. The same phylogeographical pattern, however, was not detected for paternally inherited chloroplast DNA haplotypes. Two chlorotypes were distributed throughout the range of the species with little geographical population differentiation (G(ST) = N-ST = 0.093). This provides evidence for highly efficient pollen-mediated gene flow among isolated forest patches, both within and between the QTP and adjacent highland populations. A lack of isolation to pollen-mediated gene flow between forests on the QTP and adjacent highlands is surprising given that the Tengger Desert has been a geographical barrier between these two regions for approximately the last 1.8 million years.
Resumo:
Luo Ning ( Mineralogy, Petrology, Deposit Mineralogy) Directed by Fu Liyun With the increase of the level of exploration and development, North China field, as one of the maturing fields in the east, has gradually turned their prospecting targets to frontiers such as deep zones, lithologic hydrocarbon reservoirs, low permeable layers, special lithostromes, etc, which propose new challenges to mating technique of exploration engineering. In it, the special lithostrome of clay carbonate in Shu-Lu cave in Middle Flank exploration area locates in Es_3 generating rock. The area distribution is large, formation thickness is over 100 meters, the oil accumulation condition is excellent, prognostic reserves is over 80,000,000 tons, but how to effectively stimulate the special low permeable and fractured reservoir has become the bottle neck problem of stimulation and stable yields. In this thesis, through comprehensive evaluation and analysis of lithology, lithomechanics, hydrocarbon reservoir characteristics, the characteristics of fluid flow through porous medium and the stimulation measures in the past, we acquire new cognition of clay carbonate reservoirs, in addition, the research and application of first hydraulic fracturing has gained positive effect and formed commensurable comprehensive reservoir evaluation technique and mating engineering technique of hydraulic fracturing. The main cognitions and achievements are as follows: 1.Study of geological information such as lithololy analysis and nuclear magnetic logging, etc, indicates that clay carbonate formation of Shu-Lu cave is anisotropic, low permeable with high shale content, whose accumulation space gives priority to microcracks. 2.The analysis of lithomechanics of clay carbonate indicates that the hardness is moderate, Young’s modulus is between that of sandstone and limestone, clay carbonate presents plastic property and its breakdown pressure is high because of the deep buried depth. 3.The analysis of the drillstem test curves indicates that the flow and build-up pressure curve of clay carbonate of Shu-Lu cave mainly has three types: formation contamination block-up type, low permeable type, formation energy accumulation slowness type; the reservoir characteristics presents double porosity media, radial compounding, uniform flow vertical fracture, isotropy, moniliform reservoir type. The target well Jingu 3 belongs to moniliform reservoir type. 4.Through recognition and re-evaluation of the treatment effect and technologic limitations of acidizing, acid fracturing and gelled acidizing in the past, based on the sufficient survey and study of hydraulic fracturing home and abroad, combined with comprehensive formation study of target well, we launched the study of the optimization of hydraulic fracturing technique, forming the principal clue and commensurable mating technology aimed at clay carbonate formation, whose targets are preventing leak off, preventing sand bridge, preventing embedment, controlling fracture height, forming long fracture. 5. Recognition of stimulation effect evaluation.
Resumo:
Slide-debris flow is debris flow which is transformed from landslide consecutively in a short time, it comprises of two phases: First, Landslide starts to slide; Second, landslide changes to debris flow. Slide-debris flow which brings great property and life loss happens frequently at home and abroad. In order to forecast the happening possibility and scope of slide-debris flow, transfromation mechanism of Slide-debris flow must be studied. Research on transformation mechanism of slide-debris flow is intersectant science of landslide kinetics and debris flow starting theory, It is a fringe problem as well as front problem of geological hazard. This paper takes Qingning slide-debris flow in Da County, Sichuan Province for example and has studied the mechanism of its instability and transfromation into debris flow through indoor test (including usual soil test and ring shear test) and digital modeling method.The research gets the following conclusions. Qingning Landslide took place mainly because of confined water head arising from rainfall infiltration. Before Landslide occurring, it rained continuously for 22 days, accumulated precipitation arrived at 521.6mm.Investigation shows that strata of Qingning Landslide contains quaternary loose accumulation, slip soil and highly weathered bedrock, which is a good condition for formation of confined water in the slope. Further more, groundwater seepage in the slope body and corresponding slope safety factor before landslide occurring have been computed through finite element method. The result shows that because of infiltration of rainfall, confined water head in the slope arose sharply, accordingly, the safety factor of the slope declined quickly. The result also shows that force put on the slide body by the rock mass detached from Dazhaiyan mountain was the direct factor for landslide occurring. Qingning slide-debris transformation mode has been summarized, the process the landslide changed into debris flow is divided into three phases in the prospective of macroscopic geological condition: landslide occurring, transformation and debris flow. Landslide occurring phase is from slope’ local creeping slide to Landslide occurring; transformation phase contains slide body sliding on the slide bed after slide occurring and sliding on the slope after shearing opening; debris flow phase is that slide body breaks up completely and flows downward into the ditches. The transformation mechanism of Qingning slide-debris flow has been studied through indoor ring shear test of slip soil. The result shows that transformation mechanism contains two points: first, during slide body sliding on the slide bed and slope after shearing opening, shearing shrinkage, grain crushing and grain layering brought about declining of its volume and produced excess pore water pressure, and because producing velocity of excess pore water pressure is much greater than its dissipating velocity, shear strength of slide body decreased sharply because of accumulated pore water pressure. Second, grains crushing and grains layering during slide body sliding brought about thick liquefied layer at the bottom of the slidebody, liquefied layer contained high water content and its shear strength was very low, its thickness increased as the sliding displacement increasing. Liquefied layer makes slide body sliding fast and easily break down to debris flow. Excess pore water pressure and liquefied layer made shear strength of slidebody became very low, furthermore, water in the pit of slope joining in the slidebody was also a facter that made slidebody accelerate the transformation. Influence of slide body thickness and fine grains content to transformation of slide-debris flow has been studied through ring shear test. The result reaches two conclusions. First, thickness of slide body affects transformation of slide-debris flow by two ways, porewater pressure and effect of “soft base” increases as thickness of slide body increasing.so the thicker slide body is ,the easier transformation is. Second, actual dissipating velocity of porewater pressure should be considered when studying the influence of fine grains content to tranformation of slide-debris flow. There should be a critical content of fine grains which makes the difference of producing and dissipating velocity of water pore pressre greatest, this value is the best for slide-debris transformation. The whole process of slide-debris flow transformation is reproduced through discrete element method. Transformation mechanism of slide-debris flow is studied through monitoring various parameters including pore water pressure, grain crushing and grain layering in the slide body during the transformation. The result confirms and supplements the transformation mechanism of slide-debris flow got from ring shear test well.
Resumo:
Peron, N., Cox, S.J., Hutzler, S. and Weaire, D. (2007) Steady drainage in emulsions: corrections for surface Plateau borders and a model for high aqueous volume fraction. The European Physical Journal E - Soft Matter. 22: 341-351. Sponsorship: This research was supported by the European Space Agency (14914/02/NL/SH, 14308/00/NL/SG) (AO-99-031) CCN 002 MAP Project AO-99-075) and Science Foundation Ireland (RFP 05/RFP/PHY0016). SJC acknowledges support from EPSRC (EP/D071127/1).
Resumo:
*Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. *By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of normal and below-normal precipitation, and examined its effects on tree transpiration, ecosystem water use and carbon exchange. *The occurrence of HR was explained by courses of reverse flow through roots. As the drought progressed, HR maintained soil moisture above 0.15 cm(3) cm(-3) and increased transpiration by 30-50%. HR accounted for 15-25% of measured total site water depletion seasonally, peaking at 1.05 mm d(-1). The understory species depended on water redistributed by the deep-rooted overstory pine trees for their early summer water supply. Modeling carbon flux showed that in the absence of HR, gross ecosystem productivity and net ecosystem exchange could be reduced by 750 and 400 g C m(-2) yr(-1), respectively. *Hydraulic redistribution mitigated the effects of soil drying on understory and stand evapotranspiration and had important implications for net primary productivity by maintaining this whole ecosystem as a carbon sink.
Resumo:
A new finite volume method for solving the incompressible Navier--Stokes equations is presented. The main features of this method are the location of the velocity components and pressure on different staggered grids and a semi-Lagrangian method for the treatment of convection. An interpolation procedure based on area-weighting is used for the convection part of the computation. The method is applied to flow through a constricted channel, and results are obtained for Reynolds numbers, based on half the flow rate, up to 1000. The behavior of the vortex in the salient corner is investigated qualitatively and quantitatively, and excellent agreement is found with the numerical results of Dennis and Smith [Proc. Roy. Soc. London A, 372 (1980), pp. 393-414] and the asymptotic theory of Smith [J. Fluid Mech., 90 (1979), pp. 725-754].
Resumo:
The problem to be examined here is the fluctuating pressure distribution along the open cavity of the sun-roof at the top of a car compartment due to gusts passing over the sun-roof. The aim of this test is to investigate the capability of a typical commercial CFD package, PHOENICS, in recognising pressure fluctuations occurring in an important automotive industrial problem. In particular to examine the accuracy of transporting pulsatory gusts traveling along the main flow through the use of finite volume methods with higher order schemes in the numercial solutins of the unsteady compressible Navier-Stokes equations. The Helmholtz equation is used to solve the sound distribution inside the car compartment, resulting from the externally induced fluctuations.
Resumo:
In power electronics modules, heavy aluminium wires, i.e. wire diameters greater than 100 microns, are bonded to the active semiconductor devices and conductor metallization to form electric circuits of the power electronic module. Due to the high currents that may flow through these wires, a single connection usually contains several wires and thus, a large number of wires are used in a power electronics module. Under normal operation or test condition, a significant amount of stresses and strains induced in the wire and bonding interfaces, resulting in failure over time. In this paper, computer modelling techniques are used to analyse the effect of globtop design on the reliability of aluminium wirebonds under cyclic thermal-mechanical loading conditions. The results will show the sensitivity of the reliability of the wirebonds to the changes in the geometry and the material properties of the wirebond globtop.
Resumo:
An inverse food-web model for the western Antarctic Peninsula (WAP) pelagic food web was constrained with data from Palmer Long Term Ecological Research (PAL-LTER) project annual austral summer sampling cruises. Model solutions were generated for 2 regions with Adelie penguin Pygoscelis adeliae colonies presenting different population trends (a northern and a southern colony) for a 12 yr period (1995-2006). Counter to the standard paradigm, comparisons of carbon flow through bacteria, microzooplankton, and krill showed that the diatom-krill-top predator food chain is not the dominant pathway for organic carbon exchanges. The food web is more complex, including significant contributions by microzooplankton and the microbial loop. Using both inverse model results and network indices, it appears that in the northern WAP the food web is dominated by the microbial food web, with a temporal trend toward its increasing importance. The dominant pathway for the southern WAP food web varies from year to year, with no detectable temporal trend toward dominance of microzooplankton versus krill. In addition, sensitivity analyses indicated that the northern colony of Adelie penguins, whose population size has been declining over the past 35 yr, appears to have sufficient krill during summer to sustain its basic metabolic needs and rear chicks, suggesting the importance of other processes in regulating the Adelie population decline.
Resumo:
Mechanistic models such as those based on dynamic energy budget (DEB) theory are emergent ecomechanics tools to investigate the extent of fitness in organisms through changes in life history traits as explained by bioenergetic principles. The rapid growth in interest around this approach originates from the mechanistic characteristics of DEB, which are based on a number of rules dictating the use of mass and energy flow through organisms. One apparent bottleneck in DEB applications comes from the estimations of DEB parameters which are based on mathematical and statistical methods (covariation method). The parameterisation process begins with the knowledge of some functional traits of a target organism (e. g. embryo, sexual maturity and ultimate body size, feeding and assimilation rates, maintenance costs), identified from the literature or laboratory experiments. However, considering the prominent role of the mechanistic approach in ecology, the reduction of possible uncertainties is an important objective. We propose a revaluation of the laboratory procedures commonly used in ecological studies to estimate DEB parameters in marine bivalves. Our experimental organism was Brachidontes pharaonis. We supported our proposal with a validation exercise which compared life history traits as obtained by DEBs (implemented with parameters obtained using classical laboratory methods) with the actual set of species traits obtained in the field. Correspondence between the 2 approaches was very high (>95%) with respect to estimating both size and fitness. Our results demonstrate a good agreement between field data and model output for the effect of temperature and food density on age-size curve, maximum body size and total gamete production per life span. The mechanistic approach is a promising method of providing accurate predictions in a world that is under in creasing anthropogenic pressure.
Resumo:
The marine cyanobacterium Prochlorococcus, the most abundant phototrophic organism on Earth, numerically dominates the phytoplankton in nitrogen (N)-depleted oceanic gyres. Alongside inorganic N sources such as nitrite and ammonium, natural populations of this genus also acquire organic N, specifically amino acids. Here, we investigated using isotopic tracer and flow cytometric cell sorting techniques whether amino acid uptake by Prochlorococcus is subject to a diel rhythmicity, and if so, whether this was linked to a specific cell cycle stage. We observed, in contrast to diurnally similar methionine uptake rates by Synechococcus cells, obvious diurnal rhythms in methionine uptake by Prochlorococcus cells in the tropical Atlantic. These rhythms were confirmed using reproducible cyclostat experiments with a light-synchronized axenic Prochlorococcus (PCC9511 strain) culture and S-35-methionine and H-3-leucine tracers. Cells acquired the tracers at lower rates around dawn and higher rates around dusk despite > 10(4) times higher concentration of ammonium in the medium, presumably because amino acids can be directly incorporated into protein. Leucine uptake rates by cells in the S+G(2) cell cycle stage were consistently 2.2 times higher than those of cells at the G(1) stage. Furthermore, S+G(2) cells upregulated amino acid uptake 3.5 times from dawn to dusk to boost protein synthesis prior to cell division. Because Prochlorococcus populations can account from 13% at midday to 42% at dusk of total microbial uptake of methionine and probably of other amino acids in N-depleted oceanic waters, this genus exerts diurnally variable, strong competitive pressure on other bacterioplankton populations.
Resumo:
The performance of the contra-rotating Wells turbine installed in the LIMPET wave power station is compared to the predicted performance from theoretical analysis and model tests. A reasonable agreement was found between the predicted and measured turbine damping characteristic, however the turbine efficiency was found to be poorly predicted. It is postulated that this is due to the unsteady nature and mal-distribution of flow through the LIMPET turbine, which were not considered in the predictions. It is suggested that the reduced performance of the contra-rotating Wells turbine makes biplane or monoplane Wells turbines with guide vanes better solutions for OWC's.
Resumo:
This paper presents a new method for transmission loss allocation in a deregulated electrical power market. The proposed method is based on physical flow through transmission lines. The contributions of individual loads to the line flows are used as basis for allocating transmission losses to different loads. With minimum assumptions, that sound to be reasonable and cannot be rejected, a novel loss allocation formula is derived. The assumptions made are: a number of currents sharing a transmission line distribute themselves over the cross section in the same manner; that distribution causes the minimum possible power loss. Application of the proposed method is straightforward. It requires only a solved power flow and any simple algorithm for power flow tracing. Both active and reactive powers are considered in the loss allocation procedure. Results of application show the accuracy of the proposed method compared with the commonly used procedures.