814 resultados para finite games
Resumo:
The paper by Woodward [Phys. Rev. A 62, 052105 (2000)] claimed to have proved that Lagrangian theories with a nonlocality of finite extent are necessarily unstable. In this Comment we propose that this conclusion is false.
Resumo:
We have shown that finite-size effects in the correlation functions away from equilibrium may be introduced through dimensionless numbers: the Nusselt numbers, accounting for both the nature of the boundaries and the size of the system. From an analysis based on fluctuating hydrodynamics, we conclude that the mean-square fluctuations satisfy scaling laws, since they depend only on the dimensionless numbers in addition to reduced variables. We focus on the case of diffusion modes and describe some physical situations in which finite-size effects may be relevant.
Resumo:
A dynamical model based on a continuous addition of colored shot noises is presented. The resulting process is colored and non-Gaussian. A general expression for the characteristic function of the process is obtained, which, after a scaling assumption, takes on a form that is the basis of the results derived in the rest of the paper. One of these is an expansion for the cumulants, which are all finite, subject to mild conditions on the functions defining the process. This is in contrast with the Lévy distribution¿which can be obtained from our model in certain limits¿which has no finite moments. The evaluation of the spectral density and the form of the probability density function in the tails of the distribution shows that the model exhibits a power-law spectrum and long tails in a natural way. A careful analysis of the characteristic function shows that it may be separated into a part representing a Lévy process together with another part representing the deviation of our model from the Lévy process. This
Resumo:
Monte Carlo simulations of a model for gamma-Fe2O3 (maghemite) single particle of spherical shape are presented aiming at the elucidation of the specific role played by the finite size and the surface on the anomalous magnetic behavior observed in small particle systems at low temperature. The influence of the finite-size effects on the equilibrium properties of extensive magnitudes, field coolings, and hysteresis loops is studied and compared to the results for periodic boundaries. It is shown that for the smallest sizes the thermal demagnetization of the surface completely dominates the magnetization while the behavior of the core is similar to that of the periodic boundary case, independently of D. The change in shape of the hysteresis loops with D demonstrates that the reversal mode is strongly influenced by the presence of broken links and disorder at the surface
Resumo:
The liquid-liquid critical point scenario of water hypothesizes the existence of two metastable liq- uid phases low-density liquid (LDL) and high-density liquid (HDL) deep within the supercooled region. The hypothesis originates from computer simulations of the ST2 water model, but the stabil- ity of the LDL phase with respect to the crystal is still being debated. We simulate supercooled ST2 water at constant pressure, constant temperature, and constant number of molecules N for N ≤ 729 and times up to 1 μs. We observe clear differences between the two liquids, both structural and dynamical. Using several methods, including finite-size scaling, we confirm the presence of a liquid-liquid phase transition ending in a critical point. We find that the LDL is stable with respect to the crystal in 98% of our runs (we perform 372 runs for LDL or LDL-like states), and in 100% of our runs for the two largest system sizes (N = 512 and 729, for which we perform 136 runs for LDL or LDL-like states). In all these runs, tiny crystallites grow and then melt within 1 μs. Only for N ≤ 343 we observe six events (over 236 runs for LDL or LDL-like states) of spontaneous crystal- lization after crystallites reach an estimated critical size of about 70 ± 10 molecules.
Resumo:
We argue that low-temperature effects in QED can, if anywhere, only be quantitatively interesting for bound electrons. Unluckily the dominant thermal contribution turns out to be level independent, so that it does not affect the frequency of the transition radiation.
Resumo:
We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.
Resumo:
L. S. Shapley, in his paper 'Cores of Convex Games', introduces Convex Measure Games, those that are induced by a convex function on R, acting over a measure on the coalitions. But in a note he states that if this function is a function of several variables, then convexity for the function does not imply convexity of the game or even superadditivity. We prove that if the function is directionally convex, the game is convex, and conversely, any convex game can be induced by a directionally convex function acting over measures on the coalitions, with as many measures as players
Resumo:
Multiobjective matrix games have been traditionally analyzed from two different points of view: equiibrium concepts and security strategies. This paper is based upon the idea that both players try to reach equilibrium points playing pairs of security strategies, as it happens in scalar matrix games. We show conditions guaranteeing the existence of equilibria in security strategies, named security equilibria
Resumo:
There exist coalitional games with transferable utility which have the same core but different nucleoli. We show that this cannot happen in the case of assignment games. Whenever two assignment games have the same core, their nucleoli also coincide. To show this, we prove that the nucleolus of an assignment game coincides with that of its buyer-seller exact representative
Resumo:
This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem.Conditions for the observational equivalence with an associated problem with constantdiscounting are analyzed. Special attention is paid to the case of free terminal time. Strotz¿s model (an eating cake problem of a nonrenewable resource with non-constant discounting) is revisited.
Resumo:
En aquest treball presentem dues caracteritzacions de dos valors diferents en el marc dels jocs coalicionals amb cooperació restringida. Les restriccions són introduïdes com una seqüència finita de particions del conjunt del jugadors, de manera que cada una d'elles eés més grollera que l'anterior, formant així una estructura amb diferents nivells d'unions a priori.
Resumo:
We study under which conditions the core of a game involved in a convex decomposition of another game turns out to be a stable set of the decomposed game. Some applications and numerical examples, including the remarkable Lucas¿ five player game with a unique stable set different from the core, are reckoning and analyzed.
Resumo:
En aquest treball demostrem que en la classe de jocs d'assignació amb diagonal dominant (Solymosi i Raghavan, 2001), el repartiment de Thompson (que coincideix amb el valor tau) és l'únic punt del core que és maximal respecte de la relació de dominància de Lorenz, i a més coincideix amb la solucié de Dutta i Ray (1989), també coneguda com solució igualitària. En segon lloc, mitjançant una condició més forta que la de diagonal dominant, introduïm una nova classe de jocs d'assignació on cada agent obté amb la seva parella òptima almenys el doble que amb qualsevol altra parella. Per aquests jocs d'assignació amb diagonal 2-dominant, el repartiment de Thompson és l'únic punt del kernel, i per tant el nucleolo.
Resumo:
A static comparative study on set-solutions for cooperative TU games is carried out. The analysis focuses on studying the compatibility between two classical and reasonable properties introduced by Young (1985) in the context of single valued solutions, namely core-selection and coalitional monotonicity. As the main result, it is showed that coalitional monotonicity is not only incompatible with the core-selection property but also with the bargaining-selection property. This new impossibility result reinforces the tradeoff between these kinds of interesting and intuitive economic properties. Positive results about compatibility between desirable economic properties are given replacing the core selection requirement by the core-extension property.