945 resultados para fibroblast growth factor receptor 2c
Resumo:
In a fraction of patients surgically treated for cleft lip/palate, excessive scarring disturbs maxillary growth and dento-alveolar development. Since certain genes are involved in craniofacial morphogenesis as well as tissue repair, a primary defect causing cleft lip/palate could lead to altered wound healing. We performed in vitro wound healing assays with primary lip fibroblasts from 16 cleft lip/palate patients. Nine foreskin fibroblast strains were included for comparison. Cells were grown to confluency and scratch wounds were applied; wound closure was monitored morphometrically over time. Wound closure rate showed highly significant differences between fibroblast strains. Statistically, fibroblast strains from the 25 individuals could be divided into three migratory groups, namely "fast", "intermediate", and "slow". Most cleft lip/palate fibroblasts were distributed between the "fast" (5 strains) and the "intermediate" group (10 strains). These phenotypes were stable over different cell passages from the same individual. Expression of genes involved in cleft lip/palate and wound repair was determined by quantitative PCR. Transforming growth factor-α mRNA was significantly up-regulated in the "fast" group. 5 ng/ml transforming growth factor-α added to the culture medium increased the wound closure rate of cleft lip/palate strains from the "intermediate" migratory group to the level of the "fast", but had no effect on the latter group. Conversely, antibody to transforming growth factor-α or a specific inhibitor of its receptor most effectively reduced the wound closure rate of "fast" cleft lip/palate strains. Thus, fibroblasts from a distinct subgroup of cleft lip/palate patients exhibit an increased migration rate into wounds in vitro, which is linked to higher transforming growth factor-α expression and attenuated by interfering with its signaling.
Resumo:
Transforming growth factor β2 (TGF-β2) is well known to stimulate the expression of pro-fibrotic connective tissue growth factor (CTGF) in several cell types including human mesangial cells. The present study demonstrates that TGF-β2 enhances sphingosine 1-phosphate receptor 5 (S1P5) mRNA and protein expression in a time and concentration dependent manner. Pharmacological and siRNA approaches reveal that this upregulation is mediated via activation of classical TGF-β downstream effectors, Smad and mitogen-activated protein kinases. Most notably, inhibition of Gi with pertussis toxin and downregulation of S1P5 by siRNA block TGF-β2-stimulated upregulation of CTGF, demonstrating that Gi coupled S1P5 is necessary for TGF-β2-triggered expression of CTGF in human mesangial cells. Overall, these findings indicate that TGF-β2 dependent upregulation of S1P5 is required for the induction of pro-fibrotic CTGF by TGF-β. Targeting S1P5 might be an attractive novel approach to treat renal fibrotic diseases.
Resumo:
Directional migration requires robust front/back polarity. We find that fibroblasts treated with platelet-derived growth factor (PDGF) and prepolarized by plating on a fibronectin line substrate exhibit persistent migration for hours. This does not occur in the absence of PDGF or on uniformly coated fibronectin substrates. Persistent migration arises from establishment of two functional modules at cell front and back. At the front, formation of a zone containing podosome-like structures (PLS) dynamically correlates with low RhoA and myosin activity and absence of a contractile lamella. At the back, myosin contractility specifically controls tail retraction with minimal crosstalk to the front module. The PLS zone is maintained in a dynamic steady state that preserves size and position relative to the cell front, allowing for long-term coordination of front and back modules. We propose that front/back uncoupling achieved by the PLS zone is crucial for persistent migration in the absence of directional cues.
Resumo:
Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.
Resumo:
Transforming growth factor β (TGF-β) is a well characterized cytokine that appears to play a major role in directing the cellular response to injury, driving fibrogenesis, and, thus, potentially underlying the progression of chronic injury to fibrosis. In this study, we report the use of a novel TGF-β receptor antagonist to block fibrogenesis induced by ligation of the common bile duct in rats. The antagonist consisted of a chimeric IgG containing the extracellular portion of the TGF-β type II receptor. This “soluble receptor” was infused at the time of injury; in some experiments it was given at 4 days after injury, as a test of its ability to reverse fibrogenesis. The latter was assessed by expression of collagen, both as the mRNA in stellate cells isolated from control or injured liver and also by quantitative histochemistry of tissue sections. When the soluble receptor was administered at the time of injury, collagen I mRNA in stellate cells from the injured liver was 26% of that from animals receiving control IgG (P < 0.0002); when soluble receptor was given after injury induction, collagen I expression was 35% of that in control stellate cells (P < 0.0001). By quantitative histochemistry, hepatic fibrosis in treated animals was 55% of that in controls. We conclude that soluble TGF-β receptor is an effective inhibitor of experimental fibrogenesis in vivo and merits clinical evaluation as a novel agent for controlling hepatic fibrosis in chronic liver injury.
Resumo:
The topology of signal transduction is particularly important for neurons. Neurotrophic factors such as nerve growth factor (NGF) interact with receptors at distal axons and a signal is transduced by retrograde transport to the cell body to ensure survival of the neuron. We have discovered an organelle that may account for the retrograde transport of the neurotrophin signal. This organelle is derived from endocytosis of the receptor tyrosine kinase for NGF, TrkA. In vitro reactions containing semi-intact PC12 cells and ATP were used to enhance recovery of a novel organelle: small vesicles containing internalized NGF bound to activated TrkA. These vesicles were distinct from clathrin coated vesicles, uncoated primary endocytic vesicles, and synaptic vesicles, and resembled transport vesicles in their sedimentation velocity. They contained 10% of the total bound NGF and almost one-third of the total tyrosine phosphorylated TrkA. These small vesicles are compelling candidates for the organelles through which the neurotrophin signal is conveyed down the axon.
Resumo:
This report shows that loss of heterozygosity at the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) locus occurred in 5/8 (63%) dysplastic liver lesions and 11/18 (61%) hepatocellular carcinomas (HCCs) associated with the high risk factors of hepatitis virus infection and liver cirrhosis. Mutations in the remaining allele were detected in 6/11 (55%) HCCs, including deletions in a polydeoxyguanosine region known to be a target of microsatellite instability. M6P/IGF2R allele loss was also found in cirrhotic tissue of clonal origin adjacent to these dysplastic lesions and HCCs, demonstrating that M6P/IGF2R inactivation occurs early in liver carcinogenesis. In conclusion, HCCs frequently develop from clonal expansions of phenotypically normal, M6P/IGF2R-mutated hepatocytes, providing further support for the idea that M6P/IGF2R functions as a liver tumor-suppressor gene.
Resumo:
We previously have demonstrated that insulin and insulin-like growth factor-I (IGF-I) down-regulate growth hormone (GH) binding in osteoblasts by reducing the number of surface GH receptors (GHRs). The present study was undertaken to investigate the mechanism of GHR down-regulation. Treatment with 5 nM insulin or IGF-I for 18 hr significantly decreased surface GH binding to 26.4 ± 2.9% and 23.0 ± 2.7% of control (mean ± SE; P < 0.05), respectively. No corresponding reductions in the mRNA level and total cellular content of GHR were found, nor was the rate of receptor internalization affected. The effects on GHR translocation were assessed by measuring the reappearance of GH binding of whole cells after trypsinization to remove the surface receptors. GH binding of control cultures significantly increased (P < 0.05) over 2 hr after trypsinization, whereas no recovery of binding activity was detected in insulin and IGF-I-treated cultures, indicating that GHR translocation was impaired. Studies on the time course of GHR down-regulation revealed that surface GH binding was reduced significantly by 3-hr treatment (P ≤ 0.0005), whereas GHR translocation was completely abolished by 75–90 min with insulin and IGF-I. The inhibition of receptor translocation by insulin, but not IGF-I, was attenuated by wortmannin. In conclusion, insulin and IGF-I down-regulated GH binding in osteoblasts by acutely impairing GHR translocation, with their effects exerted through distinct postreceptor signaling pathways.
Resumo:
Certain peptides derived from the α1 domain of the major histocompatibility class I antigen complex (MHC-I) inhibit receptor internalization, increasing the steady-state number of active receptors on the cell surface and thereby enhancing the sensitivity to hormones and other agonists. These peptides self-assemble, and they also bind to MHC-I at the same site from which they are derived, suggesting that they could bind to receptor sites with significant sequence similarity. Receptors affected by MHC-I peptides do, indeed, have such sequence similarity, as illustrated here by insulin receptor (IR) and insulin-like growth factor-1 receptor. A synthetic peptide with sequence identical to a certain extracellular receptor domain binds to that receptor in a ligand-dependent manner and inhibits receptor internalization. Moreover, each such peptide is selective for its cognate receptor. An antibody to the IR peptide not only binds to IR and competes with the peptide but also inhibits insulin-dependent internalization of IR. These observations, and binding studies with deletion mutants of IR, indicate that the sequence QILKELEESSF encoded by exon 10 plays a key role in IR internalization. Our results illustrate a principle for identifying receptor-specific sites of importance for receptor internalization, and for enhancing sensitivity to hormones and other agonists.
Resumo:
Vascular endothelial growth factor (VEGF) is a homodimeric member of the cystine knot family of growth factors, with limited sequence homology to platelet-derived growth factor (PDGF) and transforming growth factor β2 (TGF-β). We have determined its crystal structure at a resolution of 2.5 Å, and identified its kinase domain receptor (KDR) binding site using mutational analysis. Overall, the VEGF monomer resembles that of PDGF, but its N-terminal segment is helical rather than extended. The dimerization mode of VEGF is similar to that of PDGF and very different from that of TGF-β. Mutational analysis of VEGF reveals that symmetrical binding sites for KDR are located at each pole of the VEGF homodimer. Each site contains two functional “hot spots” composed of binding determinants presented across the subunit interface. The two most important determinants are located within the largest hot spot on a short, three-stranded sheet that is conserved in PDGF and TGF-β. Functional analysis of the binding epitopes for two receptor-blocking antibodies reveal different binding determinants near each of the KDR binding hot spots.
Resumo:
Previously, we showed that retinoic acid (RA) binds to the mannose-6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) with high affinity, suggesting that M6P/IGF2R may be a receptor for RA. Here, we show that RA, after 2–3 h of incubation with cultured neonatal-rat cardiac fibroblasts, dramatically alters the intracellular distribution of M6P/IGF2R as well as that of cathepsin B (a lysosomal protease bearing M6P). Immunofluorescence techniques indicate that this change in intracellular distribution is characterized by a shift of the proteins from the perinuclear area to cytoplasmic vesicles. The effect of RA was neither blocked by an RA nuclear receptor antagonist (AGN193109) nor mimicked by a selective RA nuclear-receptor agonist (TTNPB). Furthermore, the RA-induced translocation of cathepsin B was not observed in M6P/IGF2R-deficient P388D1 cells but occurred in stably transfected P388D1 cells expressing the receptor, suggesting that the effect of RA might be the result of direct interaction with M6P/IGF2R, rather than the result of binding to the nuclear receptors. These observations not only support the idea that M6P/IGF2R mediates an RA-response pathway but also indicate a role for RA in control of intracellular trafficking of lysosomal enzymes. Therefore, our observations may have important implications for the understanding of the diverse biological effects of retinoids.
Resumo:
The Epstein–Barr virus latent membrane protein 1 (LMP1) is essential for the transformation of B lymphocytes into lymphoblastoid cell lines. Previous data are consistent with a model that LMP1 is a constitutively activated receptor that transduces signals for transformation through its carboxyl-terminal cytoplasmic tail. One transformation effector site (TES1), located within the membrane proximal 45 residues of the cytoplasmic tail, constitutively engages tumor necrosis factor receptor-associated factors. Signals from TES1 are sufficient to drive initial proliferation of infected resting B lymphocytes, but most lymphoblastoid cells infected with a virus that does not express the 155 residues beyond TES1 fail to grow as long-term cell lines. We now find that mutating two tyrosines to an isoleucine at the carboxyl end of the cytoplasmic tail cripples the ability of EBV to cause lymphoblastoid cell outgrowth, thereby marking a second transformation effector site, TES2. A yeast two-hybrid screen identified TES2 interacting proteins, including the tumor necrosis factor receptor-associated death domain protein (TRADD). TRADD was the only protein that interacted with wild-type TES2 and not with isoleucine-mutated TES2. TRADD associated with wild-type LMP1 but not with isoleucine-mutated LMP1 in mammalian cells, and TRADD constitutively associated with LMP1 in EBV-transformed cells. In transfection assays, TRADD and TES2 synergistically mediated high-level NF-κB activation. These results indicate that LMP1 appropriates TRADD to enable efficient long-term lymphoblastoid cell outgrowth. High-level NF-κB activation also appears to be a critical component of long-term outgrowth.
Resumo:
Members of the transforming growth factor-β (TGF-β) superfamily signal through heteromeric type I and type II serine/threonine kinase receptors. Transgenic mice that overexpress a dominant-negative mutation of the TGF-β type II receptor (DNIIR) under the control of a metallothionein-derived promoter (MT-DNIIR) were used to determine the role of endogenous TGF-βs in the developing mammary gland. The expression of the dominant-negative receptor was induced with zinc and was primarily localized to the stroma underlying the ductal epithelium in the mammary glands of virgin transgenic mice from two separate mouse lines. In MT-DNIIR virgin females treated with zinc, there was an increase in lateral branching of the ductal epithelium. We tested the hypothesis that expression of the dominant-negative receptor may alter expression of genes that are expressed in the stroma and regulated by TGF-βs, potentially resulting in the increased lateral branching seen in the MT-DNIIR mammary glands. The expression of hepatocyte growth factor mRNA was increased in mammary glands from transgenic animals relative to the wild-type controls, suggesting that this factor may play a role in TGF-β-mediated regulation of lateral branching. Loss of responsiveness to TGF-βs in the mammary stroma resulted in increased branching in mammary epithelium, suggesting that TGF-βs play an important role in the stromal–epithelial interactions required for branching morphogenesis.
Resumo:
Lysophosphatidic acid (1-acyl-2-lyso-sn-glycero-3-phosphate, LPA) is a multifunctional lipid mediator found in a variety of organisms that span the phylogenetic tree from humans to plants. Although its physiological function is not clearly understood, LPA is a potent regulator of mammalian cell proliferation; it is one of the major mitogens found in blood serum. In Xenopus laevis oocytes, LPA elicits oscillatory Cl− currents. This current, like other effects of LPA, is consistent with a plasma membrane receptor-mediated activation of G protein-linked signal transduction pathways. Herein we report the identification of a complementary DNA from Xenopus that encodes a functional high-affinity LPA receptor. The predicted structure of this protein of 372 amino acids contains features common to members of the seven transmembrane receptor superfamily with a predicted extracellular amino and intracellular carboxyl terminus. An antisense oligonucleotide derived from the first 5–11 predicted amino acids, selectively inhibited the expression of the endogenous high-affinity LPA receptors in Xenopus oocytes, whereas the same oligonucleotide did not affect the low-affinity LPA receptor. Expression of the full-length cRNA in oocytes led to an increase in maximal Cl− current due to increased expression of the high-affinity LPA receptor, but activation of the low-affinity receptor was, again, unaffected. Oocytes expressing cRNA prepared from this clone showed no response to other lipid mediators including prostaglandins, leukotrienes, sphingosine 1-phosphate, sphingosylphosphorylcholine, and platelet-activating factor, suggesting that the receptor is highly selective for LPA.
Resumo:
Src-family protein tyrosine kinases (PTKs) transduce signals to regulate neuronal development and synaptic plasticity. However, the nature of their activators and molecular mechanisms underlying these neural processes are unknown. Here, we show that brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor enhance expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor 1 and 2/3 proteins in rodent neocortical neurons via the Src-family PTK(s). The increase in AMPA receptor levels was blocked in cultured neocortical neurons by addition of a Src-family-selective PTK inhibitor. Accordingly, neocortical cultures from Fyn-knockout mice failed to respond to BDNF whereas those from wild-type mice responded. Moreover, the neocortex of young Fyn mutants exhibited a significant in vivo reduction in these AMPA receptor proteins but not in their mRNA levels. In vitro kinase assay revealed that BDNF can indeed activate the Fyn kinase: It enhanced tyrosine phosphorylation of Fyn as well as that of enolase supplemented exogenously. All of these results suggest that the Src-family kinase Fyn, activated by the growth factors, plays a crucial role in modulating AMPA receptor expression during brain development.