987 resultados para exon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CREB is a cAMP-responsive nuclear DNA-binding protein that binds to cAMP response elements and stimulates gene transcription upon activation of the cAMP signalling pathway. The protein consists of an amino-terminal transcriptional transactivation domain and a carboxyl-terminal DNA-binding domain (bZIP domain) comprised of a basic region and a leucine zipper involved in DNA recognition and dimerization, respectively. Recently, we discovered a testis-specific transcript of CREB that contains an alternatively spliced exon encoding multiple stop codons. CREB encoded by this transcript is a truncated protein lacking the bZIP domain. We postulated that the antigen detected by CREB antiserum in the cytoplasm of germinal cells is the truncated CREB that must also lack its nuclear translocation signal (NTS). To test this hypothesis we prepared multiple expression plasmids encoding carboxyl-terminal deletions of CREB and transiently expressed them in COS-1 cells. By Western immunoblot analysis as well as immunocytochemistry of transfected cells, we show that CREB proteins truncated to amino acid 286 or shorter are sequestered in the cytoplasm, whereas a CREB of 295 amino acids is translocated into the nucleus. Chimeric CREBs containing a heterologous NTS fused to the first 248 or 261 amino acids of CREB are able to drive the translocation of the protein into the nucleus. Thus, the nine amino acids in the basic region involved in DNA recognition between positions 287 and 295 (RRKKKEYVK) of CREB contain the NTS. Further, mutation of the lysine at position 290 in CREB to an asparagine diminishes nuclear translocation of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytosine deaminase APOBEC3G, in the absence of the human immunodeficiency virus type 1 (HIV-1) accessory gene HIV-1 viral infectivity factor (vif), inhibits viral replication by introducing G-->A hypermutation in the newly synthesized HIV-1 DNA negative strand. We tested the hypothesis that genetic variants of APOBEC3G may modify HIV-1 transmission and disease progression. Single nucleotide polymorphisms were identified in the promoter region (three), introns (two), and exons (two). Genotypes were determined for 3,073 study participants enrolled in six HIV-AIDS prospective cohorts. One codon-changing variant, H186R in exon 4, was polymorphic in African Americans (AA) (f = 37%) and rare in European Americans (f < 3%) or Europeans (f = 5%). For AA, the variant allele 186R was strongly associated with decline in CD4 T cells (CD4 slope on square root scale: -1.86, P = 0.009), The 186R allele was also associated with accelerated progression to AIDS-defining conditions in AA. The in vitro antiviral activity of the 186R enzyme was not inferior to that of the common H186 variant. These studies suggest that there may be a modifying role of variants of APOBEC3G on HIV-1 disease progression that warrants further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Mutations in genes encoding proteins from the tri-snRNP complex of the spliceosome account for more than 12% of cases of autosomal dominant retinitis pigmentosa (adRP). Although the exact mechanism by which splicing factor defects trigger photoreceptor death is not completely clear, their role in retinitis pigmentosa has been demonstrated by several genetic and functional studies. To test for possible novel associations between splicing factors and adRP, we screened four tri-snRNP splicing factor genes (EFTUD2, PRPF4, NHP2L1, and AAR2) as candidate disease genes. METHODS: We screened up to 303 patients with adRP from Europe and North America who did not carry known RP mutations. Exon-PCR and Sanger methods were used to sequence the NHP2L1 and AAR2 genes, while the sequences of EFTUD2 and PRPF4 were obtained by using long-range PCRs spanning coding and non-coding regions followed by next-generation sequencing. RESULTS: We detected novel missense changes in individual patients in the sequence of the genes PRPF4 and EFTUD2, but the role of these changes in relationship to disease could not be verified. In one other patient we identified a novel nucleotide substitution in the 5' untranslated region (UTR) of NHP2L1, which did not segregate with the disease in the family. CONCLUSIONS: The absence of clearly pathogenic mutations in the candidate genes screened in our cohort suggests that EFTUD2, PRPF4, NHP2L1, and AAR2 are either not involved in adRP or are associated with the disease in rare instances, at least as observed in this study in patients of European and North American origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The GENCODE consortium was formed to identify and map all protein-coding genes within the ENCODE regions. This was achieved by a combination of initial manual annotation by the HAVANA team, experimental validation by the GENCODE consortium and a refinement of the annotation based on these experimental results. RESULTS: The GENCODE gene features are divided into eight different categories of which only the first two (known and novel coding sequence) are confidently predicted to be protein-coding genes. 5' rapid amplification of cDNA ends (RACE) and RT-PCR were used to experimentally verify the initial annotation. Of the 420 coding loci tested, 229 RACE products have been sequenced. They supported 5' extensions of 30 loci and new splice variants in 50 loci. In addition, 46 loci without evidence for a coding sequence were validated, consisting of 31 novel and 15 putative transcripts. We assessed the comprehensiveness of the GENCODE annotation by attempting to validate all the predicted exon boundaries outside the GENCODE annotation. Out of 1,215 tested in a subset of the ENCODE regions, 14 novel exon pairs were validated, only two of them in intergenic regions. CONCLUSION: In total, 487 loci, of which 434 are coding, have been annotated as part of the GENCODE reference set available from the UCSC browser. Comparison of GENCODE annotation with RefSeq and ENSEMBL show only 40% of GENCODE exons are contained within the two sets, which is a reflection of the high number of alternative splice forms with unique exons annotated. Over 50% of coding loci have been experimentally verified by 5' RACE for EGASP and the GENCODE collaboration is continuing to refine its annotation of 1% human genome with the aid of experimental validation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare and lethal developmental disorder of the lung defined by a constellation of characteristic histopathological features. Nonpulmonary anomalies involving organs of gastrointestinal, cardiovascular, and genitourinary systems have been identified in approximately 80% of patients with ACD/MPV. We have collected DNA and pathological samples from more than 90 infants with ACD/MPV and their family members. Since the publication of our initial report of four point mutations and 10 deletions, we have identified an additional 38 novel nonsynonymous mutations of FOXF1 (nine nonsense, seven frameshift, one inframe deletion, 20 missense, and one no stop). This report represents an up to date list of all known FOXF1 mutations to the best of our knowledge. Majority of the cases are sporadic. We report four familial cases of which three show maternal inheritance, consistent with paternal imprinting of the gene. Twenty five mutations (60%) are located within the putative DNA-binding domain, indicating its plausible role in FOXF1 function. Five mutations map to the second exon. We identified two additional genic and eight genomic deletions upstream to FOXF1. These results corroborate and extend our previous observations and further establish involvement of FOXF1 in ACD/MPV and lung organogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weaver syndrome, first described in 1974, is characterized by tall stature, a typical facial appearance, and variable intellectual disability. In 2011, mutations in the histone methyltransferase, EZH2, were shown to cause Weaver syndrome. To date, we have identified 48 individuals with EZH2 mutations. The mutations were primarily missense mutations occurring throughout the gene, with some clustering in the SET domain (12/48). Truncating mutations were uncommon (4/48) and only identified in the final exon, after the SET domain. Through analyses of clinical data and facial photographs of EZH2 mutation-positive individuals, we have shown that the facial features can be subtle and the clinical diagnosis of Weaver syndrome is thus challenging, especially in older individuals. However, tall stature is very common, reported in >90% of affected individuals. Intellectual disability is also common, present in ~80%, but is highly variable and frequently mild. Additional clinical features which may help in stratifying individuals to EZH2 mutation testing include camptodactyly, soft, doughy skin, umbilical hernia, and a low, hoarse cry. Considerable phenotypic overlap between Sotos and Weaver syndromes is also evident. The identification of an EZH2 mutation can therefore provide an objective means of confirming a subtle presentation of Weaver syndrome and/or distinguishing Weaver and Sotos syndromes. As mutation testing becomes increasingly accessible and larger numbers of EZH2 mutation-positive individuals are identified, knowledge of the clinical spectrum and prognostic implications of EZH2 mutations should improve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RESUME La télomérase confère une durée de vie illimitée et est réactivée dans la plupart des cellules tumorales. Sa sous-unité catalytique hTERT est définie comme le facteur limitant pour son activation. De l'identification de facteurs liant la région régulatrice d'hTERT, au rôle de la méthylation de l'ADN et de la modification des histones, de nombreux modèles de régulation ont été suggérés. Cependant, aucun de ces modèles n'a pu expliquer l'inactivation de la télomérase dans la plupart des cellules somatiques et sa réactivation dans la majorité des cellules tumorales. De plus, les observations contradictoires entre le faible niveau d'expression d'ARN messager d'hTERT dans les cellules télomérase-positives et la très forte activité transcriptionnelle du promoteur d'hTERT en transfection restent incomprises. Dans cette étude, nous avons montré que la région proximale du gène hTERT (exon 1 et 2) était impliquée dans la répression de l'activité de son promoteur. Nous avons identifié le facteur CTCF comme étant un inhibiteur du promoteur d'hTERT, en se liant au niveau de son premier exon. La méthylation de l'exon 1 du gène hTERT, couramment observée dans les tumeurs mais pas dans les cellules normales, empêcherait la liaison de CTCF. L'étude du profil de méthylation du promoteur d'hTERT indique qu'une partie du promoteur reste déméthylée et qu'elle semble suffisante pour permettre une faible activité transcriptionnelle du gène hTERT. Ainsi, la méthylation particulière des régions régulatrices d'hTERT inhibe la liaison de CTCF tout en permettant une faible transcription du gène. Cependant, dans certaines cellules tumorales, le promoteur et la région proximale du gène hTERT ne sont pas méthylés. Dans les lignées cellulaires tumorales de tesitcules et d'ovaires, l'inhibition de CTCF est contrée par son paralogue BORIS, qui se lie aussi au niveau de l'exon 1 d'hTERT, mais permet ainsi l'activation du promoteur. L'étude de l'expression du gène BORIS montre qu'il est exclusivement exprimé dans les tissus normaux de testicules et d'ovaires jeunes, ainsi qu'à différents niveaux dans la plupart des tumeurs. Sa transcription est sous le contrôle de deux promoteurs. Le promoteur proximal est régulé par méthylation et un transcrit alternatif majoritaire, délété de l'exon 6, est trouvé lorsque ce promoteur est actif. Tous ces résultats conduisent à un modèle de régulation du gène hTERT qui tient compte du profil épigénétique du gène et qui permet d'expliquer le faible taux de transcription observé in vivo. De plus, l'expression de BORIS dans les cancers et son implication dans l'activation du gène hTERT pourrait permettre de comprendre les phénomènes de dérégulation épigénétique et d'immortalisation qui ont lieu durant la tumorigenèse. SUMMARY Telomerase confers an unlimited lifespan, and is reactivated in most tumor cells. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for telomerase activity. Between activators and repressors that bind to the hTERT 5' regulatory region, and the role of CpG methylation and histone acetylation, an abundance of regulatory models have been suggested. None of these models can explain the silence of telomerase in most somatic cells and its reactivation in tumor cells. Moreover, the contradictory observations of the low level of hTERT mRNA in telomerase-positive cells and the high transcriptional activity of the hTERT promoter in transfection experiments remain unresolved. In this study, we demonstrated that the proximal exonic region of the hTERT gene (exon 1 and 2) is involved in the inhibition of its promoter. We identified the protein CTCF as the inhibitor of the hTERT promoter, through its binding to the first exon. The methylation of the first exon region, which is often observed in cancer cells but not in noimal cells, represses CTCF binding. Study of hTERT promoter methylation shows a partial demethylation sufficient to activate the transcription of the hTERT gene. Therefore, we demonstrated that the particular methylation profile of the hTERT regulatory sequences inhibits the binding of CTCF, while it allows a low transcription of the gene. Nevertheless, in some tumor cells, the promoter and the proximal exonic region of hTERT are unmethylated. In testicular and ovarian cancer cell lines, CTCF inhibition is counteracted by its BORIS paralogue that also binds the hTERT first exon but allows the promoter activation. The study of BORIS gene regulation showed that this factor is exclusively expressed in normal tissue of testis and ovary of young woman, as well as in almost all tumors with different levels. Two promoters were found to induce its transcription. The proximal promoter was regulated by methylation. Moreover, a major alternative transcript, deleted of the exon 6, is detected when this promoter is active. All these results lead to a model for hTERT regulation that takes into account the epigenetic profile of the gene and provides an explanation for the low transcriptional level observed in vivo. BORIS expression in cancers and its implication in hTERT activation might also permit the understanding of epigenetic deregulation and immortalization phenomena that occur during tumorigenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Huntington's disease is a rare neurodegenerative disease caused by a pathologic CAG expansion in the exon 1 of the huntingtin (HTT) gene. Aggregation and abnormal function of the mutant HTT (mHTT) cause motor, cognitive and psychiatric symptoms in patients, which lead to death in 15-20 years. Currently, there is no treatment for HD. Experimental approaches based on drug, cell or gene therapy are developed and reach progressively to the clinic. Among them, mHTT silencing using small non-coding nucleic acids display important physiopathological benefit in HD experimental models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the largest international study on Glanzmann thrombasthenia (GT), an inherited bleeding disorder where defects of the ITGA2B and ITGB3 genes cause quantitative or qualitative defects of the αIIbβ3 integrin, a key mediator of platelet aggregation. Sequencing of the coding regions and splice sites of both genes in members of 76 affected families identified 78 genetic variants (55 novel) suspected to cause GT. Four large deletions or duplications were found by quantitative real-time PCR. Families with mutations in either gene were indistinguishable in terms of bleeding severity that varied even among siblings. Families were grouped into type I and the rarer type II or variant forms with residual αIIbβ3 expression. Variant forms helped identify genes encoding proteins mediating integrin activation. Splicing defects and stop codons were common for both ITGA2B and ITGB3 and essentially led to a reduced or absent αIIbβ3 expression; included was a heterozygous c.1440-13_c.1440-1del in intron 14 of ITGA2B causing exon skipping in seven unrelated families. Molecular modeling revealed how many missense mutations induced subtle changes in αIIb and β3 domain structure across both subunits, thereby interfering with integrin maturation and/or function. Our study extends knowledge of GT and the pathophysiology of an integrin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) is a cellular messenger which is mutagenic in bacteria and human TK6 cells and induces deamination of 5-methylcytosine (5meC) residues in vitro. The aims of this study were: (i) to investigate whether NO induces 5meC deamination in codon 248 of the p53 gene in cultured human bronchial epithelial cells (BEAS-2B); and (ii) to compare NO mutagenicity to that of ethylnitrosourea (ENU), a strong mutagen. Two approaches were used: (i) a novel genotypic assay, using RFLP/PCR technology on purified exon VII sequence of the p53 gene; and (ii) a phenotypic (HPRT) mutation assay using 6-thioguanine selection. BEAS-2B cells were either exposed to 4 mM DEA/NO (Et2N[N2O2]Na, an agent that spontaneously releases NO into the medium) or transfected with the inducible nitric oxide synthase (iNOS) gene. The genotypic mutation assay, which has a sensitivity of 1 x 10(-6), showed that 4 mM ENU induces detectable numbers of G --> A transitions in codon 248 of p53 while 5-methylcytosine deamination was not detected in either iNOS-transfected cells or cells exposed to 4 mM DEA/NO. Moreover, ENU was dose-responsively mutagenic in the phenotypic HPRT assay, reaching mutation frequencies of 24 and 96 times that of untreated control cells at ENU concentrations of 4 and 8 mM respectively; by contrast, 4 mM DEA/NO induced no detectable mutations in this assay, nor were any observed in cells transfected with murine iNOS. We conclude that if NO is at all promutagenic in these cells, it is significantly less so than the ethylating mutagen, ENU.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated two siblings with granulomatous histiocytosis prominent in the nasal area, mimicking rhinoscleroma and Rosai-Dorfman syndrome. Genome-wide linkage analysis and whole-exome sequencing identified a homozygous frameshift deletion in SLC29A3, which encodes human equilibrative nucleoside transporter-3 (hENT3). Germline mutations in SLC29A3 have been reported in rare patients with a wide range of overlapping clinical features and inherited disorders including H syndrome, pigmented hypertrichosis with insulin-dependent diabetes, and Faisalabad histiocytosis. With the exception of insulin-dependent diabetes and mild finger and toe contractures in one sibling, the two patients with nasal granulomatous histiocytosis studied here displayed none of the many SLC29A3-associated phenotypes. This mild clinical phenotype probably results from a remarkable genetic mechanism. The SLC29A3 frameshift deletion prevents the expression of the normally coding transcripts. It instead leads to the translation, expression, and function of an otherwise noncoding, out-of-frame mRNA splice variant lacking exon 3 that is eliminated by nonsense-mediated mRNA decay (NMD) in healthy individuals. The mutated isoform differs from the wild-type hENT3 by the modification of 20 residues in exon 2 and the removal of another 28 amino acids in exon 3, which include the second transmembrane domain. As a result, this new isoform displays some functional activity. This mechanism probably accounts for the narrow and mild clinical phenotype of the patients. This study highlights the"rescue" role played by a normally noncoding mRNA splice variant of SLC29A3, uncovering a new mechanism by which frameshift mutations can be hypomorphic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To report the clinical and genetic study of a child with bilateral anophthalmia. Methods: A 14-year-old Egyptian boy, born from consanguineous parents, underwent a general and a full ophthalmological examination. Mutation screen of the A/M genes with recessive inheritance was done stepwise and DNA was analyzed by Sanger sequencing. Results: Bilateral anophthalmia, arachnodactyly of the feet and high arched palate were observed on general examination. The parents were first cousins and healthy. Sequencing analysis revealed a novel compound heterozygous mutation in one of the copy of exon 2 of VSX2 and a possible deletion of at least exon 2 on the other allele. Conclusions: A compound heterozygous VSX2 mutation associated with anophthalmia was identified in a patient from an Egyptian consanguineous family. This report brings the number of VSX2 mutation in anophthalmia/microphthalmia (A/M) to 13. Functional consequences of the reported changes still need to be characterized, as well as the percentage of A/M caused by mutations in the VSX2 gene. This family also shows that despite consanguinity, heterozygous mutations can also happen and one should not restrict the molecular analysis to homozygous mutations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Un dels organismes model més utilitzats en experimentació genètica és la Drosophila melanogaster ja que la facilitat de manipulació genètica i la seva simplicitat permeten estudiar processos biològics amb múltiples aplicabilitats en diferents àmbits d’estudi com el desenvolupament embrionari i la morfogènesis. La morfogènesi es un dels esdeveniments més importants durant el desenvolupament embrionari que permet la formació dels diferent teixits i òrgans, i que depèn de l'expressió genètica i de l'activació i coordinació de diferents vies de senyalització. Entendre com es coordinen aquest processos es fonamental per conèixer com es forma un òrgan. Així, l’objectiu principal d’aquest Treball de Final de Grau és identificar nous gens implicats en la formació del sistema traqueal (el nostre òrgan model) mitjançant un mini-­‐cribratge funcional de gens que s’expressen en la tràquea, a més de generar eines per a l'estudi de la via de senyalització FGF/Bnl durant la remodelació del sistema traqueal mitjançant la tècnica de knock in. Per a dur-­‐ho a terme, amb el suport de la base de dades de Gens i Genomes de Drosophila melanogaster (mod-­‐ENCODE Tissue Expression Data) s’han seleccionat gens candidats expressats a la tràquea en estat larvari. Un cop identificats, s'ha estudiat la seva possible funció en el desenvolupament de les tràquees mitjançant el seu silenciament amb el sistema UAS-­‐Gal4. Així hem vist que Vein (CG10491), CG17098, No Ocelli (CG4491) i Peptidasa (CG4017) presenten diversos fenotips que afecten la formació dels traqueoblasts. També hem vist que Vein, lligand de la via EGF és necessari per a la proliferació i supervivència de les cèl·∙lules traqueals del sac aeri. Finalment s’ha iniciat la generació d'un knock in en el gen branchless (bnl). Per aquest motiu s'han amplificat les regions 5’ i 3’ de l’exó 2 del gen Bnl i s'ha iniciat la seva clonació dirigida al vector de destí pTV-­‐Cherry. Aquesta tècnica generarà eines que permetran entendre la funció del gen bnl durant la remodelació del sistema traqueal.