930 resultados para excess sludge
Resumo:
At the mid-latitudes of Utopia Planitia (UP), Mars, a suite of spatially-associated landforms exhibit geomorphological traits that, on Earth, would be consistent with periglacial processes and the possible freeze-thaw cycling of water. The suite comprises small-sized polygonally-patterned ground, polygon-junction and -margin pits, and scalloped, rimless depressions. Typically, the landforms incise a dark-toned terrain that is thought to be ice-rich. Here, we investigate the dark-toned terrain by using high resolution images from the HiRISE as well as near-infrared spectral-data from the OMEGA and CRISM. The terrain displays erosional characteristics consistent with a sedimentary nature and near-infrared spectra characterised by a blue slope similar to that of weathered basaltic-tephra. We also describe volcanic terrain that is dark-toned and periglacially-modified in the Kamchatka mountain-range of eastern Russia. The terrain is characterised by weathered tephra inter-bedded with snow, ice-wedge polygons and near-surface excess ice. The excess ice forms in the pore space of the tephra as the result of snow-melt infiltration and, subsequently, in-situ freezing. Based on this possible analogue, we construct a three-stage mechanism that explains the possible ice-enrichment of a broad expanse of dark-toned terrain at the mid-latitudes of UP: (1) the dark-toned terrain accumulates and forms via the regional deposition of sediments sourced from explosive volcanism; (2) the volcanic sediments are blanketed by atmospherically-precipitated (H2O) snow, ice or an admixture of the two, either concurrent with the volcanic-events or between discrete events; and, (3) under the influence of high obliquity or explosive volcanism, boundary conditions tolerant of thaw evolve and this, in turn, permits the migration, cycling and eventual formation of excess ice in the volcanic sediments. Over time, and through episodic iterations of this scenario, excess ice forms to decametres of depth. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A bench-scale treatability study was conducted on a high-strength wastewater from a chemical plant to develop an alternative for the existing waste stabilization pond treatment system. The objective of this study was to determine the treatability of the wastewater by the activated sludge process and, if treatable, to determine appropriate operating conditions, and to evaluate the degradability of bis(2-chloroethyl)ether (Chlorex) and benzene in the activated sludge system. Four 4-L Plexi-glass, complete mixing, continuous flow activated sludge reactors were operated in parallel under different operating conditions over a 6-month period. The operating conditions examined were hydraulic retention time (HRT), sludge retention time (SRT), nutrient supplement, and Chlorex/benzene spikes. Generally the activated sludge system treating high-strength wastewater was stable under large variations of organic loading and operating conditions. At an HRT of 2 days, more than 90% removal efficiency with good sludge settleability was achieved when the organic loading was less than 0.4 g BOD$\sb5$/g MLVSS/d or 0.8 g COD/g MLVSS/d. At least 20 days of SRT was required to maintain steady operation. Phosphorus addition enhanced the performance of the system especially during stressed operation. On the average, removals of benzene and Chlorex were 73-86% and 37-65%, respectively. In addition, the low-strength wastewater was treatable by activated sludge process, showing more than 90% BOD removal at a HRT of 0.5 days. In general, the sludge had poor settling characteristics. The aerated lagoon process treating high-strength wastewater also provided significant organic reduction, but did not produce an acceptable effluent concentration. ^
Resumo:
In this paper we present a deuterium excess (d) record from an ice core drilled on a small ice cap in Svalbard in 1997. The core site is located at Lomonosovfonna at 1255 m asl, and the analyzed time series spans the period 1400-1990 A.D. The record shows pronounced multidecadal to centennial-scale variations coherent with sea surface temperature changes registered in the subtropical to southern middle-latitude North Atlantic during the instrumental period. We interpret the negative trend in the deuterium excess during the 1400s and 1500s as an indication of cooling in the North Atlantic associated with the onset of the Little Ice Age. Consistently positive anomalies of d after 1900, peaking at about 1950, correspond with well-documented contemporary warming. Yet the maximum values of deuterium excess during 1900-1990 are not as high as in the early part of the record (pre-1550). This suggests that the sea surface temperatures during this earlier period of time in the North Atlantic to the south of approximately 45°N were at least comparable with those registered in the 20th century before the end of the 1980s. We examine the potential for a cold bias to exist in the deuterium excess record due to increased evaporation from the local colder sources of moisture having isotopically cold signature. It is argued that despite a recent oceanic warming, the contribution from this local moisture to the Lomonosovfonna precipitation budget is still insufficient to interfere with the isotopic signal from the primary moisture region in the midlatitude North Atlantic.
(Table T10) Elemental ratios, biogenic barium and phosphorus excess of ODP Hole 171B-1049C sediments
Resumo:
In large areas of the world's oceans, there is a relationship between the mass flux of particulate matter and the unsupported 231Pa/230Th (xs231Pa/xs230Th) activity ratio of recent sediments. This observation forms the basis for using the xs231Pa/xs230Th ratio as a proxy for past changes in export productivity. However, a simple relationship between xs231Pa/xs 230Th ratio and particle flux requires that the water residence time in an ocean basin is far in excess of the scavenging residence time of 231Pa, and that the composition of sinking particles maintains a strong preference for the adsorption of 230Th over 231Pa with a constant 230Th/231Pa fractionation factor (F). The best correlation between xs231Pa/xs230Th ratio and mass flux is found in the Pacific Ocean. In the Atlantic, the contrast in the xs231Pa/xs230Th ratios between open ocean (low flux regions) and ocean margins (high flux regions) is much less pronounced due to the shorter residence time of deep water, resulting in less effective boundary scavenging of 231Pa. In the Southern Ocean, south of the Polar Front, there is no more a simple relationship between xs231Pa/xs230Th and particle flux. This is a result of a southward decrease in F, probably reflecting the increased opal content of sinking particles. Opal does not fractionate 231Pa and 230Th significantly. This lack of fractionation results in high xs231Pa/xs230Th ratios in opal-dominated regions, even in areas of very low particle fluxes such as the Weddell Sea. The xs231Pa/xs230Th ratio can therefore only be used as a paleoproductivity proxy if, in the time interval of interest, changes in the basin ventilation rate and differential scavenging of both radionuclides due to changes in the chemical composition of particulate matter can be excluded.