929 resultados para etching anisotropy
Resumo:
Image creator Shaw was General Secretary of the Alumni Association, 1904-1029 and Director of the Bureau of Alumni relations, 1929 -1950. He edited and illustrated the Michigan Alumnus and Michigan Alumnus Quarterly Review.
Resumo:
Image creator Shaw was General Secretary of the Alumni Association, 1904-1029 and Director of the Bureau of Alumni relations, 1929 -1950. He edited and illustrated the Michigan Alumnus and Michigan Alumnus Quarterly Review.
Resumo:
A novel class of nonlinear, visco-elastic rheologies has recently been developed by MUHLHAUS et al. (2002a, b). The theory was originally developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock. The orientation of the layer surfaces or slip planes in the context of crystallographic slip is determined by the normal vector the so-called director of these surfaces. Here the model (MUHLHAUS et al., 2002a, b) is generalized to include thermal effects; it is shown that in 2-D steady states the director is given by the gradient of the flow potential. The model is applied to anisotropic simple shear where the directors are initially parallel to the shear direction. The relative effects of textural hardening and thermal softening are demonstrated. We then turn to natural convection and compare the time evolution and approximately steady states of isotropic and anisotropic convection for a Rayleigh number Ra=5.64x10(5) for aspect ratios of the experimental domain of 1 and 2, respectively. The isotropic case has a simple steady-state solution, whereas in the orthotropic convection model patterns evolve continuously in the core of the convection cell, which makes only a near-steady condition possible. This near-steady state condition shows well aligned boundary layers, and the number of convection cells which develop appears to be reduced in the orthotropic case. At the moderate Rayleigh numbers explored here we found only minor influences in the change from aspect ratio one to two in the model domain.
Resumo:
We consider a problem of robust performance analysis of linear discrete time varying systems on a bounded time interval. The system is represented in the state-space form. It is driven by a random input disturbance with imprecisely known probability distribution; this distributional uncertainty is described in terms of entropy. The worst-case performance of the system is quantified by its a-anisotropic norm. Computing the anisotropic norm is reduced to solving a set of difference Riccati and Lyapunov equations and a special form equation.
Resumo:
The 6% Ge isocomposition profile change of individual SiGe islands during Si capping at 640 degrees C is investigated by atomic force microscopy combined with a selective etching procedure. The island shape transforms from a dome to a {103}-faceted pyramid at a Si capping thickness of 0.32 nm, followed by the decreasing of pyramid facet inclination with increasing Si capping layer thickness. The 6% Ge isocomposition profiles show that the island with more highly Si enriched at its one base corner before Si capping becomes to be more highly Si intermixed along pyramid base diagonals during Si capping. This Si enrichment evolution inside an island during Si capping can be attributed to the exchange of capped Si atoms that aggregated to the island by surface diffusion with Ge atoms from inside the island by both atomic surface segregation and interdiffusion rather than to the atomic interdiffusion at the interface between the island and the Si substrate. In addition, the observed Si enrichment along the island base diagonals is attempted to be explained on the basis of the elastic constant anisotropy of the Si and Ge materials in (001) plane. (c) 2006 American Institute of Physics.
Resumo:
The paper presents a new theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including folding and kinking in multi-layered visco-elastic rock. The orientation of slip planes in the context of crystallographic slip is determined by the normal vector, the so-called director of these surfaces. The model is applied to simulate anisotropic natural mantle convection. We compare the evolution of the director and approximately steady states of isotropic and anisotropic convection. The isotropic case has a simple steady state solution, whereas the orthotropic convection model produces a continuously evolving patterning in tile core of the convection cell which makes only a near-steady condition possible, in which the thermal boundary layer appears to be well aligned with the flow and hence as observed in seismic tomomgraphy strong anistropic.
Resumo:
In this work, a microchanneled chirped fiber Bragg grating (MCFBG) is proposed and fabricated through the femtosecond laser-assisted chemical etching. The microchannel (~550 µm) gives access to the external index liquid, thus inducing refractive index (RI) sensitivity to the structure. In the experiment, the transmission bands induced by the reduced effective index in the microchannel region were used to sense the surrounding RI and temperature changes. The experimental results show good agreement with the theoretical analysis. The proposed MCFBG offers enhanced RI sensitivity without degrading the robustness of the device showing good application potential as bio-chemical sensors.
Resumo:
Studies of spatial summation often use sinusoidal gratings with blurred edges. When the envelope is elongated (i) along the grating stripes and (ii) at right angles to the grating stripes, we refer to the stimuli as skunk-tails and tiger-tails respectively. Previous work [Polat & Tyler, 1999; Vision Research, 39, 887-895.] has found that sensitivity to skunk-tails is greater than for tiger-tails, but there have been several failures to replicate this result within a subset of the conditions. To address this we measured detection thresholds for skunk-tails, tiger-tails and squares of grating with sides matched to the lengths of the tails. For foveal viewing, we found a contrast sensitivity advantage in the order of 2 dB for skunk-tails over tiger-tails, but only for horizontal gratings. For vertical gratings, sensitivity was very similar for both tail-types. When the stimuli were presented parafoveally (upper right visual field), a small advantage was found for skunk-tails over tiger-tails at both orientations, and spatial summation slopes were close to that of the ideal observer. We did not replicate the findings of Polat & Tyler, but our results are consistent with (i) those of Foley et al. [Foley, J. M., Varadharajan, S., Koh, C. C., & Farias, C. Q. (2007) Vision Research, 47, 85-107.] who used only vertical gratings and (ii) those from modelfest, where only horizontal gratings were used. The small effect of tail-type here suggests an anisotropy in the underlying physiology. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
The fabrication of micro-channels in single-mode optical fibers is demonstrated using focused femtosecond laser processing and chemical etching. Straight line micro-channels are achieved based on a simple technique which overcomes limitations imposed by the fiber curved surface.
Resumo:
The microchannelled chirped fibre Bragg grating (MCFBG) was fabricated using femtosecond laser processing and HF-etching. Intrinsical refractive-index sensitivity induced by the microchannel makes MCFBGs ideal for biochemical sensing.
Resumo:
The work presents a new method that combines plasma etching with extrinsic techniques to simultaneously measure matrix and surface protein and lipid deposits. The acronym for this technique is PEEMS - Plasma Etching and Emission Monitoring System. Previous work has identified the presence of proteinaceous and lipoidal deposition on the surface of contact lenses and highlighted the probability that penetration of these spoilants will occur. This technique developed here allows unambiguous identification of the depth of penetration of spoilants to be made for various material types. It is for this reason that the technique has been employed in this thesis. The technique is applied as a 'molecular' scalpel, removing known amounts of material from the target. In this case from both the anterior .and posterior surfaces of a 'soft' contact lens. The residual material is then characterised by other analytical techniques such as UV/visible .and fluorescence spectroscopy. Several studies have be.en carried out for both in vivo and in vitro spoilt materials. The analysis and identification of absorbed protein and lipid of the substrate revealed the importance of many factors in the absorption and adsorption process. The effect of the material structure, protein nature (in terms of size, shape and charge) and environment conditions were examined in order to determine the relative uptake of tear proteins. The studies were extended to real cases in order to study the. patient dependent factors and lipoidal penetration.