982 resultados para estrogen E2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uterine endometrium is a major target for the estrogen. However, the molecular basis of estrogen action in the endometrium is largely unknown. I have used two approaches to study the effects of estrogen on the endometrium. One approach involved the study of the interaction between estrogen and retinoic acid (RA) pathways in the endometrium. I have demonstrated that estrogen administration to rodents and estrogen replacement therapy (ERT) in postmenopausal women selectively induced the endometrial expression of retinaldehyde dehydrogenase II (RALDH2), a critical enzyme of RA biosynthesis. RALDH2 was expressed exclusively in the stromal cells, especially in the stroma adjacent to the luminal and glandular epithelia. The induction of RALDH2 by estrogen required estrogen receptor and occurred via a direct increase in RALDH2 transcription. Among the three RA receptors, estrogen selectively induced the expression of RARα. In parallel, estrogen also increased the utilization of all-trans retinol (the substrate for RA biosynthesis) and the expression of two RA-regulated marker genes, cellular retinoic acid binding protein II (CRABP2) and tissue transglutaminase (tTG) in the endometrium. Thus estrogen coordinately upregulated both the production and signaling of RA in both the rodent and human endometrium. This coordinate upregulation of RA system appeared to play a role in counterbalancing the stimulatory effects of estrogen on the endometrium, since the depletion of endogenous RA in mice led to an increase in estrogen-stimulated stromal proliferation and endometrial Akt phosphorylation. In addition, I have also used a systematic approach (DNA microarray) to categorize genes and pathways affected by the ERT in the endometrium of postmenopausal women and identified a novel estrogen-regulated gene EIG121. EIG121 was exclusively expressed in the glandular epithelial cells of the endometrium and induced by estrogen in vivo and in cultured cell lines. Compared with the normal endometrium, EIG121 was highly overexpressed in type 1 endometrial cancer, but profoundly suppressed in type 2 endometrial tumors. Taken together, these studies suggested that estrogen regulates the expression of many genes of both the pro-proliferative and anti-proliferative pathways and the abnormality of these pathways may increase the risks for estrogen-dependent endometrial hyperplasia and endometrial cancer. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creatine Kinase (CK) is used as a measure of exercise-induced muscle membrane damage. During acute eccentric (muscle lengthening) exercise, muscle sarcolemma, sarcoplasmic reticulum, and Z-lines are damaged, thus causing muscle proteins and enzymes to leak into the interstitial fluid. Strenuous eccentric exercise produces an elevation of oxygen free radicals, which further increases muscle damage. Muscle soreness and fatigue can be attributed to this membrane damage. Estradiol, however, may preserve membrane stability post-exercise (Brancaccio, Maffulli, & Limongelli, 2007; Carter, Dobridge, & Hackney, 2001; Tiidus, 2001). Because estradiol has a similar structure to Vitamin E, which is known to have antioxidant properties, and both are known to affect membrane structure, researchers have proposed that estrogen acts as an antioxidant to provide a protective effect on the post-exercise muscle of women (Sandoval & Matt, 2002). As a result, it has been postulated that muscles in women incur less damage in response to an acute strenuous exercise as compared to men. PURPOSE: To determine if circulating estrogen concentrations are related to muscle damage, as measured by creatine kinase activity and to determine gender differences in creatine kinase as a marker of muscle damage in response to an acute heavy resistance exercise protocol. METHODS: 7 healthy, resistance-trained, eumenhorrheic women (23±3 y, 169±9.1 cm, 66.4±10.5 kg) and 8 healthy, resistance-trained men (25±5 y, 178±6.7 cm, 82.3±9.33 kg) volunteered to participate in the study. Subjects performed an Acute Resistance Exercise Test (ARET) consisting of 6 sets of 5 repetitions Smith machine squats at 90% of their previously determined 1-RM. Blood samples were taken pre-, mid-, post-, 1 hour post-, 6 hours post-, and 24 hours post-exercise. Samples were stored at -80ºC until analyzed. Serum creatine kinase was measured using an assay kit from Genzyme (Framingham, MA). Serum estradiol was measured by an ELISA from GenWay (San Diego, CA). Estradiol b-receptor presence on granulocytes was measured via flow cytometry using primary antibodies from Abcam (Cambridge, MA) and PeCy7 antibodies (secondary) from Santa Cruz (Santa Cruz, CA). RESULTS: No significant correlations between estrogen and CK response were found after an acute resistant exercise protocol. Moreover, no significant change in estradiol receptors were expressed on granulocytes after exercise. Creatine Kinase response, however, differed significantly between genders. Men had higher resting CK concentrations throughout all time points. Creatine Kinase response increased significantly after exercise in both men and women (p=0.008, F=9.798). Men had a significantly higher CK response at 24 hours post exercise than women. A significant condition/sex/time interaction was exhibited in CK response (p=0.02, F=4.547). Perceived general soreness presented a significant condition, sex interaction (p=0.01, F=9.532). DISCUSSION: Although no estradiol and CK response correlations were found in response to exercise, a significant difference in creatine kinase activity was present between men and women. This discrepancy of our results and findings in the literature may be due to the high variability between subjects in creatine kinase activity as well as estrogen concentrations. The lack of significance in change of estradiol receptor expression on granulocytes in response to exercise may be due to intracellular estradiol receptor staining and non-specific gating for granulocytes rather than additional staining for neutrophil markers. Because neutrophils are the initial cells present in the inflammatory response after strenuous exercise, staining for estrogen receptors on this cell type may allow for a better understanding of the effect of estrogen and its hypothesized protective effect against muscle damage. Furthermore, the mechanism of action may include estradiol receptor expression on the muscle fiber itself may play a role in the protective effects of estradiol rather than or in addition to expression on neutrophils. We have shown here that gender differences occur in CK activity as a marker of muscle damage in response to strenuous eccentric exercise, but may not be the result of estradiol concentration or estradiol receptor expression on granulocytes. Other variables should be examined in order to determine the mechanism involved in the difference in creatine kinase as a marker of muscle damage between men and women after heavy resistance exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity and physical inactivity are modifiable risk factors that are associated with several health issues; they are major factors in up to 30% of major cancers. Elevated levels of circulating insulin-like growth factor-I (IGF-I) have been associated with high body composition measurements and high cancer risk; exogenous estrogen use is associated with low circulating IGF-I levels and high cancer risk. The relationship between physical activity and circulating IGF levels is complex and findings of previous studies of their relationship remain inconsistent; however, these studies included vague definitions of physical activity. In this study, we used cross-sectional data from the Women's Health Initiative to determine the relationship between specific measures of physical activity (e.g., intensity, duration, and frequency) and circulating IGF-I levels, accounting for exogenous estrogen use and body composition. These data were collected from women enrolled at Women's Health Initiative clinical centers at Baylor College of Medicine and Wake Forest University School of Medicine. Multivariate linear regression analysis showed that circulating IGF-I and IGF-binding protein (BP) 3 levels were positively associated with frequency, duration, and intensity of physical activity. Circulating IGF-I levels and the molar IGF-I:IGF-BP3 ratio were significantly associated with frequency of walking, whereas circulating IGF-BP3 levels were significantly associated with strenuous physical activity, suggesting that different aspects of physical activity and their effects on fitness affect members of the IGF family differently. The results from our study support the recommendation of a regular exercise routine, particularly that of strenuous intensity, for postmenopausal women as a means to prevention of cancer.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Ductal carcinoma in situ (DCIS) is the most prevalent precursor to invasive breast cancer (IBC), the second leading cause of death in women in the United States. The three most important prognostic markers for IBC are Estrogen receptor (ER), Progesterone receptor (PR) and HER2/neu. The four groups (IBC) defined as (1) ER and/or PR positive and HER2/neu negative, (2) ER and/or PR positive and HER2/neu positive (3) ER and/or PR negative and HER2/neu positive and (4) negative for all three of these receptors (Triple negative). However, they have not been well studied in DCIS. This is an exploratory study with a primary objective to examine the prevalence of ER, PR, and HER2/neu in DCIS, to explore if the defined groups of IBC occur in DCIS and to consider the biological relationship between these four groups and the proliferative activity of the tumor. A secondary goal of this study is to examine the relationship between grade and proliferative activity. Methods. Using immunohistochemistry, I have measured Ki-67, ER, PR and HER2/neu positivity for a series of cases of DCIS. Results. 20 ER and/or PR positive and HER2/neu negative (50%) with average PI of 0.05, 7 ER and/or PR positive and HER2/neu positive (17.5%) with average PI of 0.14, 10 ER and/or PR negative and HER2/neu positive (25%) with average PI of 0.18, and three triple negative (7.5%) with average PI of 0.18. ER and/or PR positive and HER2/neu positive group has the highest PI (p<0.001). Further, the ER and/or PR positive and HER2/neu positive group show a linear relationship between PI and average ER/PR positivity (R=0.6). PI increases with higher grades. Conclusion. PI appears to depend upon the average fraction of positive ER/PR tumor cells, possibly with a synergistic dependence when HER2/neu is positive. If ER/PR is negative, then both HER2/neu positive and the triple negative cases appear to cluster around an average PI that is higher than the average PI in HER2/neu negative ER/PR positive negative cases. In the triple negative tumors there must be another driver of proliferation.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen receptor (ER) and the tumor suppressor p53 are key prognostic indicators in breast cancer. Estrogen signaling through its receptor (ER) controls proliferation of normal as well as transformed mammary epithelial cells, and the presence of ER is established as a marker of good prognosis and response to therapy. The p53 tumor suppressor gene is often referred to as the "cellular gatekeeper" due to its extensive control of cell proliferation and apoptosis. Loss of functional p53 is a negative prognostic indicator and is correlated with lack of response to antiestrogens, reduced disease-free interval and increased chance of disease recurrence. Clinical studies have demonstrated that tumors with mutated p53 tend to be ER negative, while ER positive tumors tend to have wild type p53. ^ Recent studies from our lab indicate that p53 genotype correlates with estrogen receptor expression in mammary tumors in vivo. We therefore hypothesized that p53 regulates ER expression in mammary cancer cells by recruitment of specific cofactors to the ER promoter. To test this, MCF-7 cells were treated with doxorubicin or ionizing radiation, both of which stimulated significant increases in p53 expression, as expected, but also increased ER expression in a p53-dependent manner. Furthermore, in cells treated with siRNA targeting p53, both p53 and ER protein levels were significantly reduced. P53 was also demonstrated to transcriptionally regulate the ER promoter in luciferase assays and chromatin immunoprecipitation assays showed that p53 was recruited to the ER promoter along with CARM1, CBP, c-Jun and Sp1 and that this multifactor complex was formed in a p53-dependent manner. The regulation of ER by p53 has therapeutic implications, as the treatment of breast cancer cells with doxorubicin sensitized these cells to tamoxifen treatment. Furthermore, response to tamoxifen as well as to estrogen was dependent on p53 expression in ER positive human breast cancer cells. Taken together, these data demonstrate that p53 regulates ER expression through transcriptional control of the ER promoter, accounting for their concordant expression in human breast cancer and identifying potentially beneficial therapeutic strategies for the treatment of ER positive breast cancers. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Assessment of estrogen receptor (ER) expression has inconsistent utility as a prognostic marker in epithelial ovarian carcinoma. In breast and endometrial cancers, the use of estrogen-induced gene panels, rather than ER expression alone, has shown improved prognostic capability. Specifically, over-expression of estrogen-induced genes in these tumors is associated with a better prognosis and signifies estrogen sensitivity that can be exploited with hormone antagonizing agents. It was therefore hypothesized that estrogen-induced gene expression in ovarian carcinoma would successfully predict outcomes and differentiate between tumors of varying estrogen sensitivities. Methods. Two hundred nineteen (219) patients with ovarian cancer who underwent surgery at M. D. Anderson between 2004 and 2007 were identified. Of these, eighty-three (83) patients were selected for inclusion because they had advanced stage, high-grade serous carcinoma of the ovary or peritoneum, had not received neoadjuvant chemotherapy, and had readily available frozen tissue for study. All patients had also received adjuvant treatment with platinum and taxane agents. The expression of seven genes known to be induced by estrogen in the female reproductive tract (EIG121, sFRP1, sFRP4, RALDH2, PR, IGF-1, and ER) was measured using qRT-PCR. Unsupervised cluster analyses of multiple gene permutations were used to categorize patients as high or low estrogen-induced gene expressors. QPCR gene expression results were then compared to ER and PR immunohistochemical (IHC) expression. Cox proportional hazards models were used to evaluate the effects of both individual genes and selected gene clusters on patient survival. Results. Median follow-up time was 38.7 months (range 1-68 months). In a multivariate model, overall survival was predicted by sFRP1 expression (HR 1.10 [1.02-1.19], p=0.01) and EIG121 expression (HR 1.28 [1.10-1.49], p<0.01). A cluster defined by EIG121 and ER was further examined because that combination appeared to reasonably segregate tumors into distinct groups of high and low estrogen-induced gene expressors. Shorter overall survival was associated with high estrogen-induced gene expressors (HR 2.84 [1.11-7.30], p=0.03), even after adjustment for race, age, body mass index, and residual disease at debulking. No difference in IHC ER or PR expression was noted between gene clusters. Conclusion. In sharp contrast to breast and endometrial cancers, high estrogen-induced gene expression predicts shorter overall survival in patients with high-grade serous ovarian carcinoma. An estrogen-induced gene biomarker panel may have utility as prognostic indicator and may be useful to guide management with estrogen antagonists in this population.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diethylstilbestrol (DES) is a known human carcinogen and teratogen whose mechanism of action remains undetermined. As essentially diploid Chinese hamster cell line (Don) was used to test diethylstilbestrol (DES), dienestrol, hexestrol and the naturally occurring estrogens, estradiol and estriol for their ability to cause metaphase arrest and to induce aneuploidy. These compounds arrest mitosis within a narrow range of high concentrations and induce aneuploidy in recovering cell populations. DES was the most effective arrestant on a comparative molar basis. Estradiol and estriol were less potent as arrestants but were effective inducers of aneuploidy. Aneuploidy was induced in a non-random manner. The smallest chromosomes were most frequently recorded in aneuploid cells. Using anti-tubulin antibody and indirect immunofluorescence, it was found that DES inhibits bi-polar spindle assembly and disrupts the cytoplasmic microtubule complex (CMTC). Estradiol arrests mitosis in a manner that allows spindle assembly. Estradiol has no apparent effect on the CMTC. The naturally occurring estrogens caused chromosome displacement during mitotic arrest. Electron microscopy confirmed that the displaced chromosomes appeared at the polar regions of arrested cells. The arresting effect of estradiol, and to some extent DES, was reduced by the addition of dibutyryl cyclic adenosine monophosphate (db-cAMP). Aneuploidy induction by DES and similar compounds may be related to their carcinogenic and/or teratogenic potential. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this dissertation, I discovered that function of TRIM24 as a co-activator of ERα-mediated transcriptional activation is dependent on specific histone modifications in tumorigenic human breast cancer-derived MCF7 cells. In the first part, I proved that TRIM24-PHD finger domain, which recognizes unmethylated histone H3 lysine K4 (H3K4me0), is critical for ERα-regulated transcription. Therefore, when LSD1-mediated demethylation of H3K4 is inhibited, activation of TRIM24-regulated ERα target genes is greatly impaired. Importantly, I demonstrated that TRIM24 and LSD1 are cyclically recruited to estrogen responsive elements (EREs) in a time-dependent manner upon estrogen induction, and depletion of their expression exert corresponding time-dependent effect on target gene activation. I also identified that phosphorylation of histone H3 threonine T6 disrupts TRIM24 from binding to the chromatin and from activating ERα-regulated targets. In the second part, I revealed that TRIM24 depletion has additive effect to LSD1 inhibitor- and Tamoxifen-mediated reduction in survival and proliferation in breast cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we investigated the regulation of the nuclear proto-oncogene, c-fos by estrogen in vivo. In the uterus, estrogen causes a rapid, dramatic and transient induction of c-fos mRNA and this occurs by transcriptional activation. We have discovered a previously unrecognized regulatory mechanism by which fos becomes desensitized to estrogen following the transient induction. We investigated three aspects of this desensitization: (1) the kinetics and general characteristics of the phenomenon; (2) the molecular mechanism of the desensitization; and (3) the relationship of desensitization to estrogen stimulated DNA synthesis. The desensitization occurs between 3-24 hours after initial hormonal stimulation and is reversible within 72 hours. The desensitization is not species specific, in that it occurs in both the rat and mouse. The desensitization also occurs in at least two estrogen responsive tissues, the uterus and vagina. The desensitization is not unique to c-fos, since both c-myc and c-jun show similar patterns of desensitization. However, the desensitization is not observed with creatine kinase B (CKB), indicating that not all estrogen inducible genes become desensitized. In the second general area, we determined the desensitization is at the transcriptional level. The desensitization is homologous, but not heterologous, since estrogen induction does not desensitize c-fos to other agents. Other studies show that the desensitization is not due to the lack of functional estrogen receptors. Taken together, these findings suggest that the desensitization occurs at the level of the estrogen responsive element. In the third major area, we demonstrated that the desensitization appears to be related to estrogen induced DNA synthesis. Support for this suggestion comes from the observation that short acting estrogens which induce fos, but not DNA synthesis, do not produce desensitization. ^