948 resultados para energy from organic waste
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Linear resonant harvesters have been the most common type of generators used to scavenge energy from mechanical vibrations. When subject to harmonic excitation, good performance is achieved once the device is tuned so that its natural frequency coincides with the excitation frequency. In such a situation, the average power harvested in a cycle is proportional to the cube of the excitation frequency and inversely proportional to the suspension damping, which is sought to be very low. However, a very low damping involves a relatively long transient in the system response, where the classical formulation adopted for steady-state regimes do not hold. This paper presents an investigation into the design of a linear resonant harvester to scavenge energy from time-limited harmonic excitations involving a transient response, which could be more likely in some practical situations. An application is presented considering train-induced vibrations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
The current socio-economic situation has brought a need to look for alternative ways to get energy that allow reducing the high dependence on fossil fuel sources while deflect from the climate change arising from the result of the use of these energy resources. Renewable sources of energy, low and medium temperature appear as high potential of energy resources, which have a major influence on the way of life of the people to enable decentralized energy production. In Brazil, in particular, have also the need to decentralize the energy grid, currently focused on energy from water source. The current water crisis, exemplifies the urgency of betting on other energy sources, as a way to help in emergency situations such as the current one. Therefore, this study evaluates the possibility of using biomass as a heat source in a Rankine Cycle Organic where instead of water; it uses thermal fluid as working fluid, was compared the urban areas of the city of Guaratinguetá with the urban area of the metropolitan region of São Paulo. Thus, it was established two scenarios, so it was possible to establish the cycle to be used
Resumo:
The current socio-economic situation has brought a need to look for alternative ways to get energy that allow reducing the high dependence on fossil fuel sources while deflect from the climate change arising from the result of the use of these energy resources. Renewable sources of energy, low and medium temperature appear as high potential of energy resources, which have a major influence on the way of life of the people to enable decentralized energy production. In Brazil, in particular, have also the need to decentralize the energy grid, currently focused on energy from water source. The current water crisis, exemplifies the urgency of betting on other energy sources, as a way to help in emergency situations such as the current one. Therefore, this study evaluates the possibility of using biomass as a heat source in a Rankine Cycle Organic where instead of water; it uses thermal fluid as working fluid, was compared the urban areas of the city of Guaratinguetá with the urban area of the metropolitan region of São Paulo. Thus, it was established two scenarios, so it was possible to establish the cycle to be used
Resumo:
Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries: and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models` time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave Held differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase. (C) 2008 Elsevier Ltd. All rights reserved.