934 resultados para eccentric muscle contraction
Resumo:
Initial experiments were conducted using an in situ rat tibialis anterior (TA) muscle preparation to assess the influence of dietary antioxidants on muscle contractile properties. Adult Sprague-Dawley rats were divided into two dietary groups: 1) control diet (Con) and 2) supplemented with vitamin E (VE) and alpha -lipoic acid (alpha -LA) (Antiox). Antiox rats were fed the Con rats' diet (AIN-93M) with an additional 10,000 IU VE/kg diet and 1.65 g/kg alpha -LA. After an 8-wk feeding period, no differences existed (P > 0.05) between the two dietary groups in maximum specific tension before or after a fatigue protocol or in force production during the fatigue protocol. However, in unfatigued muscle, maximal twitch tension and tetanic force production at stimulation frequencies less than or equal to 40 Hz were less (P < 0.05) in Antiox animals compared with Con. To investigate which antioxidant was responsible for the depressed force production, a second experiment was conducted using an in vitro rat diaphragm preparation. Varying concentrations of VE and dihydrolipoic acid, the reduced form of -LA, were added either individually or in combination to baths containing diaphragm muscle strips. The results from these experiments indicate that high levels of VE depress skeletal muscle force production at low stimulation frequencies.
Resumo:
The repeatability of initial values and rate of change of EMG signal mean spectral frequency (MNF), average rectified values (ARV), muscle fiber conduction velocity (CV) and maximal voluntary contraction (MVC) was investigated in the vastus medialis obliquus (VMO) and vastus lateralis (VL) muscles of both legs of nine healthy male subjects during voluntary, isometric contractions sustained for 50 s at 50% MVC. The values of MVC were recorded for both legs three times on each day and for three subsequent days, while the EMG signals have been recorded twice a day for three subsequent days. The degree of repeatability was investigated using the Fisher test based upon the ANalysis Of VAriance (ANOVA), the Standard Error of the Mean (SEM) and the Intraclass Correlation Coefficient (ICC). Data collected showed a high level of repeatability of MVC measurement (normalized SEM from 1.1% to 6.4% of the mean). MNF and ARV initial values also showed a high level of repeatability (ICC > 70% for all muscles and legs except right VMO). At 50% MVC level no relevant pattern of fatigue was observed for the VMO and VL muscles, suggesting that other portions of the quadriceps might have contributed to the generated effort. These observations seem to suggest that in the investigation of muscles belonging to a multi-muscular group at submaximal level, the more selective electrically elicited contractions should be preferred to voluntary contractions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Smooth muscle cells (SMC) exhibit a functional plasticity, modulating from the mature phenotype in which the primary function is contraction, to a less differentiated state with increased capacities for motility, protein synthesis, and proliferation. The present study determined, using Western analysis, double-label immunofluorescence and confocal microscopy, whether changes in phenotypic expression of rabbit aortic SMC in culture could be correlated with alterations in expression and distribution of structural proteins. Contractile state SMC (days 1 and 3 of primary culture) showed distinct sorting of proteins into subcellular domains, consistent with the theory that the SMC structural machinery is compartmentalised within the cell. Proteins specialised for contraction (alpha -SM actin, SM-MHC, and calponin) were highly expressed in these cells and concentrated in the upper central region of the cell. Vimentin was confined to the body of the cell, providing support for the contractile apparatus but not co-localising with it. In line with its role in cell attachment and motility, beta -NM actin was localised to the cell periphery and basal cortex. The dense body protein alpha -actinin was concentrated at the cell periphery, possibly stabilising both contractile and motile apparatus. Vinculin-containing focal adhesions were well developed, indicating the cells' strong adhesion to substrate. In synthetic state SMC (passages 2-3 of culture), there was decreased expression of contractile and adhesion (vinculin) proteins with a concomitant increase in cytoskeletal proteins (beta -non-muscle [NM] actin and vimentin). These quantitative changes in structural proteins were associated with dramatic chan-es in their distribution. The distinct compartmentalisation of structural proteins observed in contractile state SMC was no longer obvious, with proteins more evenly distributed throughout die cytoplasm to accommodate altered cell function. Thus, SMC phenotypic modulation involves not only quantitative changes in contractile and cytoskeletal proteins, but also reorganisation of these proteins. Since the cytoskeleton acts as a spatial regulator of intracellular signalling, reorganisation of the cytoskeleton may lead to realignment of signalling molecules, which, in turn, may mediate the changes in function associated with SMC phenotypic modulation. (C) 2001 Wiley-Liss, Inc.
Resumo:
Radical-mediated oxidative damage of skeletal muscle membranes has been implicated in the fatigue process. Vitamin E (VE) is a major chain breaking antioxidant that has been shown to reduce contraction-mediated oxidative damage. We hypothesized that VE deficiency would adversely affect Muscle contractile function, resulting in a more rapid development of muscular fatigue during exercise. To test this postulate, rats were fed either a VE-deficient (EDEF) diet or a control (CON) diet containing VE. Following a 12-week feeding period, animals were anesthetized and mechanically ventilated. Muscle endurance (fatigue) and contractile properties were evaluated using an in situ preparation of the tibialis anterior (TA) muscle. Contractile properties of the TA muscle were determined before and after a fatigue protocol. The muscle fatigue protocol consisted of 60 min of repetitive contractions (250 ms trains at 15 Hz; duty cycle = I I %) of the TA muscle. Prior to the fatigue protocol, no significant differences existed in the force-frequency curves between EDEF and CON animals. At the completion of the fatigue protocol, muscular force production was significantly (P
Resumo:
Objective: To examine the effect of the application of tape over the patella on the onset of electromyographic (EMG) activity of vastus medialis obliquus (VMO) relative to vastus lateralis (VL) in participants with and without patellofemoral pain syndrome (PFPS). Design: Randomised within subject. Settings: University laboratory. Participants: Ten participants with PFPS and 12 asymptomatic controls. Interventions: Three experimental taping conditions: no tape, therapeutic tape, and placebo tape. Main Outcome Measures: Electromyographic onset of VMO and VL assessed during the concentric and eccentric phases of a stair stepping task. Results: When participants with PFPS completed the stair stepping task, the application of therapeutic patellar tape was found to alter the temporal characteristics of VMO and VL activation, whereas placebo tape had no effect. In contrast, there was no change in the EMG onset of VMO and VL with the application of placebo or therapeutic tape to the knee in the asymptomatic participants. Conclusions: These data support the use of patellar taping as an adjunct to rehabilitation in people with PFPS.
Resumo:
Objective: This study compares myoelectric manifestations of fatigue of the sternocleidomastoid (SCM) and anterior scalene (AS) muscles between 10 chronic neck pain subjects and 10 normal matched controls. Methods: Surface electromyography (sEMG) signals were recorded from the sternal bead of SCM and AS muscles bilaterally during submaximal isometric cervical flexion contractions at 25 and 50% of the maximum voluntary contraction (MVC). The mean frequency, average rectified value and conduction velocity of the sEMG signal were calculated to quantify myoelectric manifestations of muscle fatigue. Results: For both the SCM and AS muscles, the Mann-Whitney U test indicated that the initial value and slope of the mean frequency in neck pain patients were greater than in healthy subjects (P < 0.05). This was significant both at 25 and 50% of MVC. Conclusions: These results suggest: (a) a predominance of type-II fibres in the neck pain patients and/or (b) greater fatigability of the superficial cervical flexors in neck pain patients. These results are in agreement with previous muscle biopsy studies in subjects with neck pain, which identified transformation of slow-twitch type-I fibres to fast-twitch type-IIB fibres, as well as the clinical observation of reduced endurance in the cervical flexors in neck pain patients. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Dissertation presented to obtain the Ph.D degree in Molecular Medicine
Resumo:
OBJECTIVE: To assess the effect of food restriction (FR) on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR). METHODS: Isolated papillary muscle preparations of the left ventricle (LV) of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY) rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet) for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1) reduction in the body weight and LV weight of SHR and WKY rats; 2) increase in the time to peak shortening and the time to peak developed tension (DT) in the hypertrophied myocardium of the SHR; 3) diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.
Resumo:
Statin treatment in association with physical exercise practice can substantially reduce cardiovascular mortality risk of dyslipidemic individuals, but this practice is associated with myopathic event exacerbation. This study aimed to present the most recent results of specific literature about the effects of statins and its association with physical exercise on skeletal musculature. Thus, a literature review was performed using PubMed and SciELO databases, through the combination of the keywords “statin” AND “exercise” AND “muscle”, restricting the selection to original studies published between January 1990 and November 2013. Sixteen studies evaluating the effects of statins in association with acute or chronic exercises on skeletal muscle were analyzed. Study results indicate that athletes using statins can experience deleterious effects on skeletal muscle, as the exacerbation of skeletal muscle injuries are more frequent with intense training or acute eccentric and strenuous exercises. Moderate physical training, in turn, when associated to statins does not increase creatine kinase levels or pain reports, but improves muscle and metabolic functions as a consequence of training. Therefore, it is suggested that dyslipidemic patients undergoing statin treatment should be exposed to moderate aerobic training in combination to resistance exercises three times a week, and the provision of physical training prior to drug administration is desirable, whenever possible.
Resumo:
BACKGROUND: Half of the patients with end-stage heart failure suffer from persistent atrial fibrillation (AF). Atrial kick (AK) accounts for 10-15% of the ejection fraction. A device restoring AK should significantly improve cardiac output (CO) and possibly delay ventricular assist device (VAD) implantation. This study has been designed to assess the mechanical effects of a motorless pump on the right chambers of the heart in an animal model. METHODS: Atripump is a dome-shaped biometal actuator electrically driven by a pacemaker-like control unit. In eight sheep, the device was sutured onto the right atrium (RA). AF was simulated with rapid atrial pacing. RA ejection fraction (EF) was assessed with intracardiac ultrasound (ICUS) in baseline, AF and assisted-AF status. In two animals, the pump was left in place for 4 weeks and then explanted. Histology examination was carried out. The mean values for single measurement per animal with +/-SD were analysed. RESULTS: The contraction rate of the device was 60 per min. RA EF was 41% in baseline, 7% in AF and 21% in assisted-AF conditions. CO was 7+/-0.5 l min(-1) in baseline, 6.2+/-0.5 l min(-1) in AF and 6.7+/-0.5 l min(-1) in assisted-AF status (p<0.01). Histology of the atrium in the chronic group showed chronic tissue inflammation and no sign of tissue necrosis. CONCLUSIONS: The artificial muscle restores the AK and improves CO. In patients with end-stage cardiac failure and permanent AF, if implanted on both sides, it would improve CO and possibly delay or even avoid complex surgical treatment such as VAD implantation.
Resumo:
The Atripump is a motorless, volume displacement pump based on artificial muscle technology that could reproduce the pump function of normal atrium. It could help prevent blood clots due to blood stagnation and eventually avoid anticoagulation therapy in atrial fibrillation (AF). An animal study has been designed to assess mechanical effects of this pump on fibrillating atrium. The Atripump is a dome shaped silicone coated nitinol actuator. A pacemaker like control unit drives the actuator. In five adult sheep, the right atrium (RA) was exposed and dome sutured onto the epicardium. Atrial fibrillation was induced using rapid epicardial pacing (600 beats/min). Ejection fraction of the RA was obtained with intracardiac ultrasound in baseline, AF and Atripump assisted AF conditions. The dome's contraction rate was 60/min with power supply of 12V, 400 mA for 200 ms and ran for 2 hours in total. Mean temperature on the RA was 39+/-1.5 degrees C. Right atrium ejection fraction was 31% in baseline conditions, 5% and 20% in AF and assisted AF, respectively. In two animals a thrombus appeared in the right appendix and washed out once the pump was turned on. The Atripump washes blood out the RA acting as an anticoagulant device. Possible clinical implications in patients with chronic AF are prevention of embolism of cardiac origin and avoidance of hemorrhagic complication due to chronic anticoagulation.
Resumo:
La faiblesse des muscles respiratoires peut entraîner une dyspnée, un encombrement bronchique et une insuffisance respiratoire potentiellement fatale. L'évaluation de la force musculaire respiratoire s'impose donc dans les affections neuro-musculaires, mais également dans les situations de dyspnée inexpliquée par une première évaluation cardiaque et pulmonaire. À la spirométrie, une faiblesse musculaire est suspectée sur la base de la boucle débit-volume montrant un débit de pointe émoussé et une fin prématurée de l'expiration. Une diminution importante de la capacité vitale en position couchée suggère une paralysie diaphragmatique. La force inspiratoire est mesurée par la pression inspiratoire maximale (PImax) contre une quasi-occlusion des voies aériennes. Ce test relativement difficile est d'interprétation délicate en cas de collaboration insuffisante. La mesure de la pression nasale sniff (SNIP) est une alternative utile, car elle élimine le problème des fuites autour de l'embout buccal et la réalisation du reniflement est facile. De même, la pression trans-diaphragmatique sniff mesure la force du diaphragme au moyen de sondes oesophagienne et gastrique. En cas de collaboration insuffisante, on peut recourir à la stimulation magnétique des nerfs phréniques qui induit une contraction non-volontaire du diaphragme. La force expiratoire est mesurée par la pression expiratoire maximale (PEmax) contre une quasi-occlusion. La force disponible pour tousser est mesurée par la pression gastrique à la toux, ou plus simplement par le débit de pointe à la toux. Chez les patients à risque, la mesure de la force des muscles respiratoires permet d'instaurer à temps une assistance ventilatoire ou à la toux.
Resumo:
We compared the extent and origin of muscle fatigue induced by short-pulse-low-frequency [conventional (CONV)] and wide-pulse-high-frequency (WPHF) neuromuscular electrical stimulation. We expected CONV contractions to mainly originate from depolarization of axonal terminal branches (spatially determined muscle fiber recruitment) and WPHF contractions to be partly produced via a central pathway (motor unit recruitment according to size principle). Greater neuromuscular fatigue was, therefore, expected following CONV compared with WPHF. Fourteen healthy subjects underwent 20 WPHF (1 ms-100 Hz) and CONV (50 μs-25 Hz) evoked isometric triceps surae contractions (work/rest periods 20:40 s) at an initial target of 10% of maximal voluntary contraction (MVC) force. Force-time integral of the 20 evoked contractions (FTI) was used as main index of muscle fatigue; MVC force loss was also quantified. Central and peripheral fatigue were assessed by voluntary activation level and paired stimulation amplitudes, respectively. FTI in WPHF was significantly lower than in CONV (21,717 ± 11,541 vs. 37,958 ± 9,898 N·s P<0,001). The reductions in MVC force (WPHF: -7.0 ± 2.7%; CONV: -6.2 ± 2.5%; P < 0.01) and paired stimulation amplitude (WPHF: -8.0 ± 4.0%; CONV: -7.4 ± 6.1%; P < 0.001) were similar between conditions, whereas no change was observed for voluntary activation level (P > 0.05). Overall, our results showed a different motor unit recruitment pattern between the two neuromuscular electrical stimulation modalities with a lower FTI indicating greater muscle fatigue for WPHF, possibly limiting the presumed benefits for rehabilitation programs.