935 resultados para dynamical chiral symmetry breaking
Resumo:
By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general-case, gravitation is not dual symmetric, there is a particular theory in which this symmetry shows up. It is a self dual (or anti-self dual) teleparallel gravity in which, due to the fact that it does not contribute to the interaction of fermions with gravitation, the purely tensor part of torsion is assumed to vanish. The ensuing fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory may eventually be more amenable to renormalization than telepaxallel gravity or general relativity.
Resumo:
In this work we implement the spontaneous breaking of lepton number in version II of the 3-3-1 models and study their phenomenological consequences. The main result of this work is that our majoron is invisible even though it belongs to a triplet representation by the 3-3-1 symmetry.
Resumo:
We show that the extension of the approximate custodial SU(2)(L+R) global symmetry to all the Yukawa interactions of the standard model Lagrangian implies the introduction of sterile right-handed neutrinos and the seesaw mechanism in this sector. In this framework, the observed quark and lepton masses may be interpreted as an effect of physics beyond the standard model. The mechanism used for breaking this symmetry in the Yukawa sector could be different from the one at work in the vector boson sector. We give three model independent examples of these mechanisms.
Resumo:
We consider a one-dimensional mean-field-hydrodynamic model of a two-component degenerate Fermi gas in an external trap, each component representing a spin state of the same atom. We demonstrate that the interconversion between them (linear coupling), imposed by a resonant electromagnetic wave, transforms the immiscible binary gas into a miscible state, if the coupling constant, kappa, exceeds a critical value, kappa(cr). The effect is predicted in a variational approximation, and confirmed by numerical solutions. Unlike the recently studied model of a binary Bose-Einsten condensate with the linear coupling, the components in the immiscible phase of the binary fermion mixture never fill two separated domains with a wall between them, but rather form antilocked (pi-phase-shifted) density waves. Another difference from the bosonic mixture is spontaneous breaking of symmetry between the two components in terms of the numbers of atoms in them, N(1) and N(2). The latter effect is characterized by the parameter nu equivalent to(N(1)-N(2))/(N(1)+N(2)) (only N(1)+N(2) is a conserved quantity), the onset of miscibility at kappa >=kappa(cr) meaning a transition to nu equivalent to 0. At kappa
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Local attractors, degeneracy and analyticity: Symmetry effects on the locally coupled Kuramoto model
Resumo:
In this work we study the local coupled Kuramoto model with periodic boundary conditions. Our main objective is to show how analytical solutions may be obtained from symmetry assumptions, and while we proceed on our endeavor we show apart from the existence of local attractors, some unexpected features resulting from the symmetry properties, such as intermittent and chaotic period phase slips, degeneracy of stable solutions and double bifurcation composition. As a result of our analysis, we show that stable fixed points in the synchronized region may be obtained with just a small amount of the existent solutions, and for a class of natural frequencies configuration we show analytical expressions for the critical synchronization coupling as a function of the number of oscillators, both exact and asymptotic. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dynamical Elastic Moduli of the Ti-13Nb-13Zr biomaterial alloy were obtained using the mechanical spectroscopy technique. The sample with heat treatment at 1170K for 30 minutes and water quenched with subsequent aging treatment at 670 K for 3 hours (TNZ + WQ + 670 K/3 h), was characterized through decay of free oscillations of the sample in the flexural vibration mode. The spectra of anelastic relaxation (internal friction and frequency) in the temperature range from 300 K to 625 K not revealed the presence of relaxation process. As shown in the literature, the hcp structure usually does not exhibit any relaxation due to the symmetry of the sites in the crystalline lattice, but if there is some relaxation, this only occurs in special cases such as low concentration of zirconium or saturation of the stoichiometric ratio of oxygen for zirconium. Dynamical elastic modulus obtained for TNZ + WQ + 670 K/3 h alloy was 87 GPa at room temperature, which is higher than the value for Ti-13Nb-13Zr alloy (64 GPa) of the literature. This increment may be related to the change of the proportion of α and β phases. Besides that, the presence of precipitates in the alloy after aging treatment hardens the material and reduces its ductility.
Resumo:
In this article we review the phenomenological consequences of radiative flavor-violation (RFV) in the MSSM. In the model under consideration the U(3)^3 flavor symmetry of the gauge sector is broken in a first step to U(2)^3 by the top and bottom Yukawa couplings of the superpotential (and possibly also by the bilinear SUSY-breaking terms). In a second step the remaining U(2)^3 flavor symmetry is softly broken by the trilinear A-terms in order to obtain the measured quark masses and the CKM matrix of the Standard Model (SM) at low energies. The phenomenological implications of this model depend on the actual choice of the SUSY breaking A-terms. If the CKM matrix is generated in the down sector (by A^d), Bs->mu^+mu^- receives non-decoupling contributions from Higgs penguins which become important already for moderate values of tan(beta). Also the Bs mixing amplitude can be significantly modified compared to the SM prediction including a potential induction of a new CP-violating phase (which is not possible in the MSSM with MFV).
Resumo:
The synthesis and characterisation of copper(I) complexes of chiral pyridine-containing macrocyclic ligands (Pc-L*) and their use as catalysts in asymmetric cyclopropanation reactions are reported. All ligands and metal complexes were fully characterised, including crystal structures of some species determined by X-ray diffraction on single crystals. This allowed characterising the very different conformations of the macrocycles which could be induced by different substituents or by metal complexation. The strategy adopted for the ligand synthesis is very flexible allowing several structural modifications. A small library of macrocyclic ligands possessing the same donor properties but with either C-1 or C-2 symmetry was synthesized. Cyclopropane products with both aromatic and aliphatic olefins were obtained in good yields and enantiomeric excesses up to 99%.
Resumo:
In the framework of chiral perturbation theory with photons and leptons, the one-loop isospin-breaking effects in Kℓ4 decays due to both the photonic contribution and the quark and meson mass differences are computed. A comparison with the isospin-breaking corrections applied by recent high statistics Ke4 experiments is performed. The calculation can be used to correct the existing form factor measurements by isospin-breaking effects that have not yet been taken into account in the experimental analysis. Based on the present work, possible forthcoming experiments on Ke4 decays could correct the isospin breaking effects in a more consistent way.
Resumo:
We elaborate on a recent study of a model of supersymmetry breaking we proposed recently, in the presence of a tunable positive cosmological constant, based on a gauged shift symmetry of a string modulus, external to the Standard Model (SM) sector. Here, we identify this symmetry with a global symmetry of the SM and work out the corresponding phenomenology. A particularly attracting possibility is to use a combination of Baryon and Lepton number that contains the known matter parity and guarantees absence of dimension-four and -five operators that violate B and L.
Resumo:
We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We apply Chiral Perturbation Theory in the p-regime and introduce the twist by means of a constant vector field. The corrections of masses, decay constants, pseudoscalar coupling constants and form factors are calculated at next-to-leading order. We detail the derivations and compare with results available in the literature. In some case there is disagreement due to a different treatment of new extra terms generated from the breaking of the cubic invariance. We advocate to treat such terms as renormalization terms of the twisting angles and reabsorb them in the on-shell conditions. We confirm that the corrections of masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. Furthermore, we show that the matrix elements of the scalar (resp. vector) form factor satisfies the Feynman–Hellman Theorem (resp. the Ward–Takahashi identity). To show the Ward–Takahashi identity we construct an effective field theory for charged pions which is invariant under electromagnetic gauge transformations and which reproduces the results obtained with Chiral Perturbation Theory at a vanishing momentum transfer. This generalizes considerations previously published for periodic boundary conditions to twisted boundary conditions. Another method to estimate the corrections in finite volume are asymptotic formulae. Asymptotic formulae were introduced by Lüscher and relate the corrections of a given physical quantity to an integral of a specific amplitude, evaluated in infinite volume. Here, we revise the original derivation of Lüscher and generalize it to finite volume with twisted boundary conditions. In some cases, the derivation involves complications due to extra terms generated from the breaking of the cubic invariance. We isolate such terms and treat them as renormalization terms just as done before. In that way, we derive asymptotic formulae for masses, decay constants, pseudoscalar coupling constants and scalar form factors. At the same time, we derive also asymptotic formulae for renormalization terms. We apply all these formulae in combination with Chiral Perturbation Theory and estimate the corrections beyond next-to-leading order. We show that asymptotic formulae for masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. A similar relation connects in an independent way asymptotic formulae for renormalization terms. We check these relations for charged pions through a direct calculation. To conclude, a numerical analysis quantifies the importance of finite volume corrections at next-to-leading order and beyond. We perform a generic Analysis and illustrate two possible applications to real simulations.