989 resultados para disseminated intravascular coagulation
Resumo:
Vitamin E and a-lipoic acid are potent nutritional antioxidants, and when used together, their antioxidant capabilities are improved as a-lipoic acid recycles vitamin E. Supplementation of vitamin E has been shown to prolong platelet aggregation but the effects of vitamin E and alpha-lipoic acid supplementation on bleeding tendency have yet to be reported. Young, male rats consumed either control diet (n=5) or vitamin E and a-lipoic acid-supplemented diet (n=5) for 14 weeks. Activated partial thromboplastin time (APTT) and prothrombin time (PT) were measured as markers of intrinsic and extrinsic coagulation pathways respectively in addition to lipid peroxidation (malondialdehyde). Supplementation significantly prolonged APTT (23.8 +/- 1.5 vs 31.4 +/- 1.2s, p < 0.05) compared to the con-trol diet; however, there was no significant difference in PT (27.8 +/- 1.5 vs 26.6 +/- 0.9s, p > 0.05). While vitamin E was increased (p < 0.05), there was no significant difference in plasma levels of malondialdehyde (p > 0.05). Dietary supplementation of vitamin E and alpha-lipoic acid increases bleeding tendency via inhibition of the intrinsic coagulation pathway with no change in markers of lipid peroxidation. Such supplementation could benefit patients with cardiovascular disease who exhibit elevated levels of coagulation and oxidative stress.
Resumo:
Aim: To develop and evaluate a rapid enzyme linked immunosorbent assay (ELISA) for the diagnosis of intravascular catheter related sepsis caused by coagulase negative staphylococci. Methods: Forty patients with a clinical and microbiological diagnosis of intravascular catheter related sepsis and positive blood cultures, caused by coagulase negative staphylococci, and 40 control patients requiring a central venous catheter as part of their clinical management were recruited into the study. Serum IgG responses to a previously undetected exocellular antigen produced by coagulase negative staphylococci, termed lipid S, were determined in the patient groups by a rapid ELISA. Results: There was a significant difference (p = < 0.0001) in serum IgG to lipid S between patients with catheter related sepsis and controls. The mean antibody titre in patients with sepsis caused by coagulase negative staphylococci was 10 429 (range, no detectable serum IgG antibody to 99 939), whereas serum IgG was not detected in the control group of patients. Conclusions: The rapid ELISA offers a simple, economical, and rapid diagnostic test for suspected intravascular catheter related sepsis caused by coagulase negative staphylococci, which can be difficult to diagnose clinically. This may facilitate treatment with appropriate antimicrobials and may help prevent the unnecessary removal of intravascular catheters.
Resumo:
Editorial
Resumo:
Objectives: The antimicrobial efficacy of a chlorhexidine gluconate (CHG) intravascular catheter gel dressing was evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and an extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. Chlorhexidine deposition on the skin surface and release from the gel were determined. Methods: The antimicrobial efficacy was evaluated in in vitro studies following microbial inoculation of the dressing and application of the dressing on the inoculated surface of a silicone membrane and donor skin [with and without a catheter segment and/or 10% (v/v) serum] on diffusion cells. Antimicrobial activity was evaluated for up to 7 days. Chlorhexidine skin surface deposition and release were also determined. Results: MRSA and E. coli were not detectable within 5 min following direct inoculation onto the CHG gel dressing. On the silicone membrane, 3 log and 6 log inocula of MRSA were eradicated within 5 min and 1 h, respectively. Time to kill was prolonged in the presence of serum and a catheter segment. Following inoculation of donor skin with 6 log cfu of MRSA, none was detected after 24 h. Chlorhexidine was released from the gel after a lag time of 30 min and increasing amounts were detected on the donor skin surface over the 48 h test period. The CHG gel dressing retained its antimicrobial activity on the artificial skin for 7 days. Conclusions: The CHG intravascular catheter site gel dressing had detectable antimicrobial activity for up to 7 days, which should suppress bacterial growth on the skin at the catheter insertion site, thereby reducing the risk of infection. © The Author 2011. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.
Resumo:
The aim of this study was to develop a practical, versatile and fast dosimetry and radiobiological model for calculation of the 3D dose distribution and radiobiological effectiveness of radioactive stents. The algorithm was written in Matlab 6.5 programming language and is based on the dose point kernel convolution. The dosimetry and radiobiological model was applied for evaluation of the 3D dose distribution of 32P, 90Y, 188Re and 177Lu stents. Of the four, 32P delivers the highest dose, while 90Y, 188Re and 177Lu require high levels of activity to deliver a significant therapeutic dose in the range of 15-30 Gy. Results of the radiobiological model demonstrated that the same physical dose delivered by different radioisotopes produces significantly different radiobiological effects. This type of theoretical dose calculation can be useful in the development of new stent designs, the planning of animal studies and clinical trials, and clinical decisions involving individualized treatment plans.
Resumo:
Inflammation is combined of a vascular and a cellular reaction, resulting in different cells and tissue responses, both the intravascular and extravascular environment. As the inflammatory process occurs, coagulation proteases, in particular thrombin (FIIa), are able to initiate various cellular responses in vascular biology and therefore is often observed activation of other biological systems, leading to complications during an event inflammatory, such as thrombosis and angiogenesis. Thus, antagonists molecules of these events are interesting models for the development of novel anti-inflammatory drugs. Thereby, it is worth stressing the glycosaminoglycans (GAGs), which are able to interact with several proteins involved in important biological processes, including inflammation and coagulation. Therefore, this study aimed to evaluate the anti-inflammatory, antithrombotic and anti-angiogenic potentials, as well anticoagulant of a dermatan sulfate-like GAG (DS) extracted from the Litopenaeus vannamei cephalotorax. The compound was obtained after proteolysis and purification by ion-exchange chromatography. After total digestion by DS-like compounds digesting lyases (chondroitinase ABC), the DS-like nature was revealed, and then called DSL. The shrimp compound showed reduced anticoagulant effect by the aPTT assay, but high anti-IIa activity, directly and through heparin cofactor II. On inflammation, the compound had a significant inhibitory effect with the reduction of proinflammatory cytokines. Potential Inhibitory were reported in the antithrombotic and anti-angiogenic assay, the latter being dose dependent. As for anti-hemostatic activity, the polysaccharides did not induced significant bleeding effect. Thus, the results shown by the shrimp DS-like compound indicate this glycosaminoglycan as a biotechnology target with prospects for the development of new multipotent drugs.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Anticoagulant agents are commonly used drugs to reduce blood coagulation in acute and chronic clinical settings. Many of these drugs target the common pathway of coagulation because it is critical for thrombin generation and disruption of this portion of the pathway has profound effects on the hemostatic process. Currently available drugs for these indications struggle with balancing desired activity with immunogenicity and poor reversibility or irreversibility in the event of hemorrhage. While improvements are being made with the current drugs, new drugs with better therapeutic indices are needed for surgical intervention and chronic indications to prevent thrombosis from occurring.
A class of therapeutics known as aptamers may be able to meet the need for safer anticoagulant agents. Aptamer are short single-stranded RNA oligonucleotides that adopt specific secondary and tertiary structures based upon their sequence. They can be generated to both enzymes and cofactors because they derive their inhibitory activity by blocking protein-protein interactions, rather than active site inhibition. They inhibit their target proteins with a high level of specificity and bind with high affinity to their target. Additionally, they can be reversed using two different antidote approaches, specific oligonucleotide antidotes, or with cationic, “universal” antidotes. The reversal of their activity is both rapid and durable.
The ability of aptamers to be generated to cofactors has been conclusively proven by generating an aptamer targeting the common pathway coagulation cofactor, Factor V (FV). We developed two aptamers with anticoagulant ability that bind to both FV and FVa, the active cofactor. Both aptamers were truncated to smaller functional sizes and had specific point mutant aptamers developed for use as controls. The anticoagulant activity of both aptamer-mutant pairs was characterized using plasma-based clotting assays and whole blood assays. The mechanism of action resulting in anticoagulant activity was assessed for one aptamer. The aptamer was found to block FVa docking to membrane surfaces, a mechanism not previously observed in any of our other anticoagulant aptamers.
To explore development of aptamers as anticoagulant agents targeting the common pathway for surgical interventions, we fused two anticoagulant aptamers targeting Factor X and prothrombin into a single molecule. The bivalent aptamer was truncated to a minimal size while maintaining robust anticoagulant activity. Characterization of the bivalent aptamer in plasma-based clotting assays indicated we had generated a very robust anticoagulant therapeutic. Furthermore, we were able to simultaneously reverse the activity of both aptamers with a single oligonucleotide antidote. This rapid and complete reversal of anticoagulant activity is not available in the antithrombotic agents currently used in surgery.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Little is known about the molecular mechanisms whereby the human blood fluke Schistosoma japonicum is able to survive in the host venous blood system. Protease inhibitors are likely released by the parasite enabling it to avoid attack by host proteolytic enzymes and coagulation factors. Interrogation of the S. japonicum genomic sequence identified a gene, SjKI-1, homologous to that encoding a single domain Kunitz protein (Sjp_0020270) which we expressed in recombinant form in Escherichia coli and purified. SjKI-1 is highly transcribed in adult worms and eggs but its expression was very low in cercariae and schistosomula. In situ immunolocalization with anti-SjKI-1 rabbit antibodies showed the protein was present in eggs trapped in the infected mouse intestinal wall. In functional assays, SjKI-1 inhibited trypsin in the picomolar range and chymotrypsin, neutrophil elastase, FXa and plasma kallikrein in the nanomolar range. Furthermore, SjKI-1, at a concentration of 7·5 µ m, prolonged 2-fold activated partial thromboplastin time of human blood coagulation. We also demonstrate that SjKI-1 has the ability to bind Ca(++). We present, therefore, characterization of the first Kunitz protein from S. japonicum which we show has an anti-coagulant properties. In addition, its inhibition of neutrophil elastase indicates SjKI-1 have an anti-inflammatory role. Having anti-thrombotic properties, SjKI-1 may point the way towards novel treatment for hemostatic disorders.
Disseminated Cerebral and Intradural Extramedullary Spinal Nocardiosis in an Immunocompetent Patient
Resumo:
Disseminated nocardiosis of the central nervous system (CNS) has been rarely reported, especially in the immunocompetent patient. We report a case of cerebral and cervical intradural extramedullary nocardiosis likely to have been the result of disseminated spread from a pulmonary infective focus. Attempts at tissue biopsy and culture of the initial cerebral and pulmonary lesions both failed to yield the diagnosis. Interval development of a symptomatic intradural extramedullary cervical lesion resulted in open biopsy and an eventual diagnosis of nocardiosis was made. We highlight the diagnostic dilemma and rarity of spinal nocardial dissemination in an immunocompetent individual.
Resumo:
Objectives: To report a case of intravascular lymphoma (IVL) in a Caucasian patient who presented with anasarca as his sole clinical sign. Material and Methods: A man presented with anasarca-type oedema and fatigue. After excluding heart failure, hepatic cirrhosis, nephrotic syndrome, hypothyroidism, AL-amyloidosis and adverse drug reaction which can all cause oedema, we turned our attention to capillary permeability disorders. Results: Closer review of the bone marrow aspirate demonstrated haemophagocytic histiocytosis, while core, renal and duodenal biopsies showed a B-cell IVL. Conclusion: The differential diagnosis of anasarca, a relatively common clinical sign, should include IVL although the diagnosis may still be challenging.
Resumo:
We summarise the properties and the fundamental mathematical results associated with basic models which describe coagulation and fragmentation processes in a deterministic manner and in which cluster size is a discrete quantity (an integer multiple of some basic unit size). In particular, we discuss Smoluchowski's equation for aggregation, the Becker-Döring model of simultaneous aggregation and fragmentation, and more general models involving coagulation and fragmentation.
Resumo:
We derive and solve models for coagulation with mass loss arising, for example, from industrial processes in which growing inclusions are lost from the melt by colliding with the wall of the vessel. We consider a variety of loss laws and a variety of coagulation kernels, deriving exact results where possible, and more generally reducing the equations to similarity solutions valid in the large-time limit. One notable result is the effect that mass removal has on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation is completely prevented. Finally, by forming an exact explicit solution for a more general initial cluster size distribution function, we illustrate how numerical results from earlier work can be interpreted in the light of the theory presented herein.