978 resultados para denaturing gradient gel by electrophoresis
Resumo:
Purpose: Considering the importance of type beta thalassaemias as hereditary syndromes of high significance in different populations of Mediterranean origin and, by extension, in the Brazilian population, the objective of the present study was to determine by PCR/DGGE the gene structures responsible for neutral polymorphisms (frameworks) observed in the human beta globin gene associated with the mutations responsible for type beta thalassaemias in a sample of the Brazilian population and, more specifically, of the population of the State of São Paulo. Patients and methods: Thirty individuals with beta thalassaemic mutations were analyzed: 22 mutations were in codon 39 (C->T), 5 in IVS1-110 (G->A), 2 in IVS1-6 (T->C) and 1 in IVS1-1 (G->A). DNA was extracted and selective amplification was performed by PCR extending from position IVS1 nt 46 to IVS2 nt 126 (474 pb). The product was then analyzed by polyacrylamide gel electrophoresis on a denaturing 10-60% urea/formamide gradient. Results: The results demonstrated that, as expected, the mutations responsible for type beta thalassaemia observed in this population are of Mediterranean origin, with 73% distribution represented by codon 39,17% by IVS1-110, 7% by IVS1-6 and 3% by IVS1-1. In turn, framework distribution seems to indicate a higher frequency of Fr 1-1 in codon 39 and IVS1-110, of Fr 1-3 in IVS1-6 and of Fr 1-2 in IVS1-1. Conclusions: These results permit us to conclude that gene amplification by PCR followed by DGGE is an appropriate method for the separation of DNA molecules that differ even by a single base change and therefore can be utilized to detect the alterations observed in the human beta globin gene. This methodology shows that, using only a pair of primers, it is possible to define the frameworks that are observed in the beta globin gene.
Resumo:
The acute phase response refers to a nonspecific and complex systemic reaction of the organism that occurs shortly after any tissue injury. The acute phase response is considered a part of the innate host defense system, which is responsible for the survival of the host during the critical early stages of attack, and in evolutionary terms, it precedes the acquired immune response. The purpose of this study was to determine serum protein concentrations, including the acute phase protein profile in agoutis (Dasyprocta azarae) in captivity, by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis. Blood samples from 11 adult healthy animals (nine females and two males) were obtained. The serum proteinogram had 21 proteins with molecular weights ranging from 15 to 240 kD. The acute phase proteins identified were: ceruloplasmin, transferrin, albumin, haptoglobin, α-1-acid glycoprotein, and hemoglobin. IgA, IgG heavy and light chains, and nonnominal identified proteins of 240, 210, 140, 98, 78, 48, 35, 31, 23, and 15 kD were also identified. The determination of the acute phase protein concentrations is a useful method for the early detection of subclinical disease or changes in the healthy animal, with predictive information on the development of disease in the future. It is possible to standardize the reference values of the serum protein profile of agoutis, which can be used for diagnosis and prognosis, treatment and clinical follow-up of nutritional disorders, and immune-mediated inflammatory diseases that may affect these animals. © 2012 Springer-Verlag London Limited.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We evaluated three molecular methods for identification of Francisella strains: pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, and 16S rRNA gene sequencing. The analysis was performed with 54 Francisella tularensis subsp. holarctica, 5 F. tularensis subsp. tularensis, 2 F. tularensis subsp. novicida, and 1 F. philomiragia strains. On the basis of the combination of results obtained by PFGE with the restriction enzymes XhoI and BamHI, PFGE revealed seven pulsotypes, which allowed us to discriminate the strains to the subspecies level and which even allowed us to discriminate among some isolates of F. tularensis subsp. holarctica. The AFLP analysis technique produced some degree of discrimination among F. tularensis subsp. holarctica strains (one primary cluster with three major subclusters and minor variations within subclusters) when EcoRI-C and MseI-A, EcoRI-T and MseI-T, EcoRI-A and MseI-C, and EcoRI-0 and MseI-CA were used as primers. The degree of similarity among the strains was about 94%. The percent similarities of the AFLP profiles of this subspecies compared to those of F. tularensis subsp. tularensis, F. tularensis subsp. novicida, and F. philomiragia were less than 90%, about 72%, and less than 24%, respectively, thus permitting easy differentiation of this subspecies. 16S rRNA gene sequencing revealed 100% similarity for all F. tularensis subsp. holarctica isolates compared in this study. These results suggest that although limited genetic heterogeneity among F. tularensis subsp. holarctica isolates was observed, PFGE and AFLP analysis appear to be promising tools for the diagnosis of infections caused by different subspecies of F. tularensis and suitable techniques for the differentiation of individual strains.
Resumo:
The ability of two-dimensional gel electrophoresis (2-DE) to separate glycoproteins was exploited to separate distinct glycoforms of kappa-casein that differed only in the number of O-glycans that were attached. To determine where the glycans were attached, the individual glycoforms were digested in-gel with pepsin and the released glycopeptides were identified from characteristic sugar ions in the tandem mass spectrometry (MS) spectra. The O-glycosylation sites were identified by tandem MS after replacement of the glycans with ammonia/aminoethanethiol. The results showed that glycans were not randomly distributed among the five potential glycosylation sites in kappa-casein. Rather, glycosylation of the monoglycoform could only be detected at a single site, T-152. Similarly the diglycoform appeared to be modified exclusively at T-152 and T-163, while the triglycoform was modified at T-152, T-163 and T-154. While low levels of glycosylation at other sites cannot be excluded the hierarchy of site occupation between glycoforms was clearly evident and argues for an ordered addition of glycans to the protein. Since all five potential O-glycosylation sites can be glycosylated in vivo, it would appear that certain sites remain latent until other sites are occupied. The determination of glycosylation site occupancy in individual glycoforms separated by 2-DE revealed a distinct pattern of in vivo glycosylation that has not been recognized previously.
Resumo:
Aeromonas genomes were investigated by restriction digesting chromosomal DNA with the endonuclease XbaI, separation of restriction fragments by pulsed field gel electrophoresis (PFGE) and principal components analysis (PCA) of resulting separation patterns. A. salmonicida salmonicida were unique amongst the isolates investigated. Separation profiles of these isolates were similar and all characterised by a distinct absence of bands in the 250kb region. Principal components analysis represented these strains as a clearly defined homogeneous group separated by insignificant Euclidian distances. However, A. salmonicida achromogenes isolates in common with those of A. hydrophila and A. sobria were shown by principal components analysis to be more heterogeneous in nature. Fragments from these isolates were more uniform in size distribution but as demonstrated by the Euclidian distances attained through PCA potentially characteristic of each strain. Furthermore passaging of Aeromonas isolates through an appropriate host did not greatly modify fragment separation profiles, indicative of the genomic stability of test aeromonads and the potential of restriction digesting/PFGE/PCA in Aeromonas typing.
Resumo:
Plasmid constitutions of Aeromonas salmonicida isolates were characterised by flat-bed and pulsed field gel electrophoresis. Resolution of plasmids by pulsed field gel electrophoresis was greater and more consistent than that achieved by flat-bed gel electrophoresis. The number of plasmids separated by pulsed field gel electrophoresis varied between A. salmonicida isolates, with five being the most common number present in the isolates used in this study. Plasmid profiles were diverse and the reproducibility of the distances migrated facilitated the use of principal components analysis for the characterisation of the isolates. Isolates were grouped according to the number of plasmids supported. Further principal components analysis of groups of isolates supporting five and seven plasmids showed a spatial separation of plasmids based upon distance migrated. Principal components analysis of plasmid profiles and antimicrobial minimum inhibitory concentrations could not be correlated suggesting that resistance to antimicrobial agents is not associated with either one plasmid or a particular plasmid constitution.
Resumo:
Various molecular systems are available for epidemiological, genetic, evolutionary, taxonomic and systematic studies of innumerable fungal infections, especially those caused by the opportunistic pathogen C. albicans. A total of 75 independent oral isolates were selected in order to compare Multilocus Enzyme Electrophoresis (MLEE), Electrophoretic Karyotyping (EK) and Microsatellite Markers (Simple Sequence Repeats - SSRs), in their abilities to differentiate and group C. albicans isolates (discriminatory power), and also, to evaluate the concordance and similarity of the groups of strains determined by cluster analysis for each fingerprinting method. Isoenzyme typing was performed using eleven enzyme systems: Adh, Sdh, M1p, Mdh, Idh, Gdh, G6pdh, Asd, Cat, Po, and Lap (data previously published). The EK method consisted of chromosomal DNA separation by pulsed-field gel electrophoresis using a CHEF system. The microsatellite markers were investigated by PCR using three polymorphic loci: EF3, CDC3, and HIS3. Dendrograms were generated by the SAHN method and UPGMA algorithm based on similarity matrices (S(SM)). The discriminatory power of the three methods was over 95%, however a paired analysis among them showed a parity of 19.7-22.4% in the identification of strains. Weak correlation was also observed among the genetic similarity matrices (S(SM)(MLEE) x S(SM)(EK) x S(SM)(SSRs)). Clustering analyses showed a mean of 9 +/- 12.4 isolates per cluster (3.8 +/- 8 isolates/taxon) for MLEE, 6.2 +/- 4.9 isolates per cluster (4 +/- 4.5 isolates/taxon) for SSRs, and 4.1 +/- 2.3 isolates per cluster (2.6 +/- 2.3 isolates/taxon) for EK. A total of 45 (13%), 39(11.2%), 5 (1.4%) and 3 (0.9%) clusters pairs from 347 showed similarity (Si) of 0.1-10%, 10.1-20%, 20.1-30% and 30.1-40%, respectively. Clinical and molecular epidemiological correlation involving the opportunistic pathogen C. albicans may be attributed dependently of each method of genotyping (i.e., MLEE, EK, and SSRs) supplemented with similarity and grouping analysis. Therefore, the use of genotyping systems that give results which offer minimum disparity, or the combination of the results of these systems, can provide greater security and consistency in the determination of strains and their genetic relationships. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Protein purification that combines the use of molecular mass exclusion membranes with electrophoresis is particularly powerful as it uses properties inherent to both techniques. The use of membranes allows efficient processing and is easily scaled up, while electrophoresis permits high resolution separation under mild conditions. The Gradiflow apparatus combines these two technologies as it uses polyacrylamide membranes to influence electrokinetic separations. The reflux electrophoresis process consists of a series of cycles incorporating a forward phase and a reverse phase. The forward phase involves collection of a target protein that passes through a separation membrane before trailing proteins in the same solution. The forward phase is repeated following clearance of the membrane in the reverse phase by reversing the current. We have devised a strategy to establish optimal reflux separation parameters, where membranes are chosen for a particular operating range and protein transfer is monitored at different pH values. In addition, forward and reverse phase times are determined during this process. Two examples of the reflux method are described. In the first case, we describe the purification strategy for proteins from a complex mixture which contains proteins of higher electrophoretic mobility than the target protein. This is a two-step procedure, where first proteins of higher mobility than the target protein are removed from the solution by a series of reflux cycles, so that the target protein remains as the leading fraction. In the second step the target protein is collected, as it has become the leading fraction of the remaining proteins. In the second example we report the development of a reflux strategy which allowed a rapid one-step preparative purification of a recombinant protein, expressed in Dictyostelium discoideum. These strategies demonstrate that the Gradiflow is amenable to a wide range of applications, as the protein of interest is not necessarily required to be the leading fraction in solution. (C) 1997 Elsevier Science B.V.
Resumo:
Trypanosoma cruzi trypomastigotes excrete-secrete a complex mixture of antigenic molecules. This antigenic mixture denominated trypomastigote excreted-secreted antigens contains a 150-160 kDa band that shows excellent performance in Chagas' disease diagnosis by immunoblotting. The present study partially characterized by two-dimensional gel electrophoresis the immunoreactivity against the 150-160kDa protein using sera samples from chagasic patients in different phases of the disease. Trypomastigote excreted-secreted antigen preparations were subjected to high-resolution two-dimensional (2D) gel electrophoresis followed by immunoblotting with sera from chagasic and non-chagasic patients. The 150-160kDa protein presented four isoforms with isoelectric focusing ranging from 6.2 to 6.7. The four isoforms were recognized by IgM from acute phase and IgG from chronic phase sera of chagasic patients. The 150-160kDa isoform with IF of approximately 6.4 became the immunodominant spot with the progression of the disease. No cross-reactivity was observed with non-chagasic or patients infected with Leishmania sp. In this study we provide basic knowledge that supports the validation of trypomastigote excreted-secreted antigens for serological diagnosis of Chagas' disease.
Resumo:
Detection of rotavirus RNA by polyacrylamide gel electrophoresis (PAGE) proved to be a highly sensitive and rapid diagnostic test. A comparison of this assay with immuno-electron microscopy (IEM) and enzyme immunoassay (EIA) in 245 faeces from children with gastroenteritis revealed complete agreement between the three assays in 238 (97.14%) samples. Among 75 samples positive in at least one of the three assays, negative results were observed in 5 (6.48%) by PAGE, in 6 (6.76%) by EIA and in none by IEM. Silver staining greatly increased the sensitivity of the PAGE assay. We conclude that although IEM remains the most sensitive and rapid rotavirus diagnostic assay, the PAGE technique has many advantages in its favour, including the non-requirement of expensive equipment, the use of only chemically defined reagents and the capacity to distinguish virus subgroup and variants and to detect non-crossreactive rotaviruses which are missed in serological assays.