824 resultados para decentralised data fusion framework
Resumo:
UEV proteins are enzymatically inactive variants of the E2 ubiquitin-conjugating enzymes that regulate noncanonical elongation of ubiquitin chains. In Saccharomyces cerevisiae, UEV is part of the RAD6-mediated error-free DNA repair pathway. In mammalian cells, UEV proteins can modulate c-FOS transcription and the G2-M transition of the cell cycle. Here we show that the UEV genes from phylogenetically distant organisms present a remarkable conservation in their exon–intron structure. We also show that the human UEV1 gene is fused with the previously unknown gene Kua. In Caenorhabditis elegans and Drosophila melanogaster, Kua and UEV are in separated loci, and are expressed as independent transcripts and proteins. In humans, Kua and UEV1 are adjacent genes, expressed either as separate transcripts encoding independent Kua and UEV1 proteins, or as a hybrid Kua–UEV transcript, encoding a two-domain protein. Kua proteins represent a novel class of conserved proteins with juxtamembrane histidine-rich motifs. Experiments with epitope-tagged proteins show that UEV1A is a nuclear protein, whereas both Kua and Kua–UEV localize to cytoplasmic structures, indicating that the Kua domain determines the cytoplasmic localization of Kua–UEV. Therefore, the addition of a Kua domain to UEV in the fused Kua–UEV protein confers new biological properties to this regulator of variant polyubiquitination.[Kua cDNAs isolated by RT-PCR and described in this paper have been deposited in the GenBank data library under accession nos. AF1155120 (H. sapiens) and AF152361 (D. melanogaster). Genomic clones containing UEV genes: S. cerevisiae, YGL087c (accession no. Z72609); S. pombe, c338 (accession no. AL023781); P. falciparum, MAL3P2 (accession no. AL034558); A. thaliana, F26F24 (accession no. AC005292); C. elegans, F39B2 (accession no. Z92834); D. melanogaster, AC014908; and H. sapiens, 1185N5 (accession no. AL034423). Accession numbers for Kua cDNAs in GenBank dbEST: M. musculus, AA7853; T. cruzi, AI612534. Other Kua-containing sequences: A. thaliana genomic clones F10M23 (accession no. AL035440), F19K23 (accession no. AC000375), and T20K9 (accession no. AC004786).
Resumo:
This paper proposes a novel approach for the analysis of illicit tablets based on their visual characteristics. In particular, the paper concentrates on the problem of ecstasy pill seizure profiling and monitoring. The presented method extracts the visual information from pill images and builds a representation of it, i.e. it builds a pill profile based on the pill visual appearance. Different visual features are used to build different image similarity measures, which are the basis for a pill monitoring strategy based on both discriminative and clustering models. The discriminative model permits to infer whether two pills come from the same seizure, while the clustering models groups of pills that share similar visual characteristics. The resulting clustering structure allows to perform a visual identification of the relationships between different seizures. The proposed approach was evaluated using a data set of 621 Ecstasy pill pictures. The results demonstrate that this is a feasible and cost effective method for performing pill profiling and monitoring.
Resumo:
The increasing volume of data describing humandisease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the@neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system’s architecture is generic enough that it could be adapted to the treatment of other diseases.Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers cliniciansthe tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medicalresearchers gain access to a critical mass of aneurysm related data due to the system’s ability to federate distributed informationsources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access andwork on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand forperforming computationally intensive simulations for treatment planning and research.
Resumo:
Objective: To understand the family management experience of liver transplantation during adolescence based on the Family Management Style Framework(FMSF). Method: This is a case study that used the FMSF as theoretical framework and the hybrid model of thematic analysis as methodological reference. The case presented is from an adolescent’s family that lives in Salvador, Bahia. The data were collected through interviews with the mother and the patient charts analysis. Results: The results shows that the family defines the transplantation as threatening and there are divergence between mother and daughter related to the teen’s capabilities perception. Facing those discrepancies, the family assumes a protective posture by believing that the teen cannot take care of herself alone. The perceived consequences reflect how much the uncertainty permeates the family environment. Conclusion: It is concluded that the use of a model to evaluate the management can help professionals to direct and plan specific interventions.
Resumo:
Background: The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties.Results: We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php.Conclusions: BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.
Resumo:
It is common in econometric applications that several hypothesis tests arecarried out at the same time. The problem then becomes how to decide whichhypotheses to reject, accounting for the multitude of tests. In this paper,we suggest a stepwise multiple testing procedure which asymptoticallycontrols the familywise error rate at a desired level. Compared to relatedsingle-step methods, our procedure is more powerful in the sense that itoften will reject more false hypotheses. In addition, we advocate the useof studentization when it is feasible. Unlike some stepwise methods, ourmethod implicitly captures the joint dependence structure of the teststatistics, which results in increased ability to detect alternativehypotheses. We prove our method asymptotically controls the familywise errorrate under minimal assumptions. We present our methodology in the context ofcomparing several strategies to a common benchmark and deciding whichstrategies actually beat the benchmark. However, our ideas can easily beextended and/or modied to other contexts, such as making inference for theindividual regression coecients in a multiple regression framework. Somesimulation studies show the improvements of our methods over previous proposals. We also provide an application to a set of real data.
Resumo:
In spite of its relative importance in the economy of many countriesand its growing interrelationships with other sectors, agriculture has traditionally been excluded from accounting standards. Nevertheless, to support its Common Agricultural Policy, for years the European Commission has been making an effort to obtain standardized information on the financial performance and condition of farms. Through the Farm Accountancy Data Network (FADN), every year data are gathered from a rotating sample of 60.000 professional farms across all member states. FADN data collection is not structured as an accounting cycle but as an extensive questionnaire. This questionnaire refers to assets, liabilities, revenues and expenses, and seems to try to obtain a "true and fair view" of the financial performance and condition of the farms it surveys. However, the definitions used in the questionnaire and the way data is aggregated often appear flawed from an accounting perspective. The objective of this paper is to contrast the accounting principles implicit in the FADN questionnaire with generally accepted accounting principles, particularly those found in the IVth Directive of the European Union, on the one hand, and those recently proposed by the International Accounting Standards Committees Steering Committeeon Agriculture in its Draft Statement of Principles, on the other hand. There are two reasons why this is useful. First, it allows to make suggestions how the information provided by FADN could be more in accordance with the accepted accounting framework, and become a more valuable tool for policy makers, farmers, and other stakeholders. Second, it helps assessing the suitability of FADN to become the starting point for a European accounting standard on agriculture.
Resumo:
Despite the advancement of phylogenetic methods to estimate speciation and extinction rates, their power can be limited under variable rates, in particular for clades with high extinction rates and small number of extant species. Fossil data can provide a powerful alternative source of information to investigate diversification processes. Here, we present PyRate, a computer program to estimate speciation and extinction rates and their temporal dynamics from fossil occurrence data. The rates are inferred in a Bayesian framework and are comparable to those estimated from phylogenetic trees. We describe how PyRate can be used to explore different models of diversification. In addition to the diversification rates, it provides estimates of the parameters of the preservation process (fossilization and sampling) and the times of speciation and extinction of each species in the data set. Moreover, we develop a new birth-death model to correlate the variation of speciation/extinction rates with changes of a continuous trait. Finally, we demonstrate the use of Bayes factors for model selection and show how the posterior estimates of a PyRate analysis can be used to generate calibration densities for Bayesian molecular clock analysis. PyRate is an open-source command-line Python program available at http://sourceforge.net/projects/pyrate/.
Resumo:
Intracellular membrane fusion proceeds via distinct stages of membrane docking, hemifusion and fusion pore opening and depends on interacting families of Rab, SNARE and SM proteins. Trans-SNARE complexes dock the membranes in close apposition. Efficient fusion requires further SNARE-associated proteins. They might increase the number of trans-SNARE complexes or the fusogenic potential of a single SNARE complex. We investigated the contributions of the SM protein Vps33 to hemifusion and pore opening between yeast vacuoles. Mutations in Vps33 that weaken its interactions with the SNARE complex allowed normal trans-SNARE pairing and lipid mixing but retarded content mixing. Deleting the H(abc) domain of the vacuolar t-SNARE Vam3, which interacts with Vps33, had the same effect. This suggests that SM proteins promote fusion pore opening by enhancing the fusogenic activity of a SNARE complex. They should thus be considered integral parts of the fusion machinery.
Resumo:
1. Aim - Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data.¦2. Location - Europe, North America, South America¦3. Methods - The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with predefined distributions and amounts of niche overlap to evaluate several ordination and species distribution modeling techniques for quantifying niche overlap. We illustrate the approach with data on two well-studied invasive species.¦4. Results - We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographic space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results.¦5. Main conclusions - The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate to study niche differences between species, subspecies or intraspecific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intraspecific lineage has changed over time.
Resumo:
For more than 20 years, many countries have been trying to set up a standardised medical record at the regional or at the national level. Most of them have not reached this goal, essentially due to two main difficulties related to patient identification and medical records standardisation. Moreover, the issues raised by the centralisation of all gathered medical data have to be tackled particularly in terms of security and privacy. We discuss here the interest of a noncentralised management of medical records which would require a specific procedure that gives to the patient access to his/her distributed medical data, wherever he/she is located.
Resumo:
BACKGROUND: Finding genes that are differentially expressed between conditions is an integral part of understanding the molecular basis of phenotypic variation. In the past decades, DNA microarrays have been used extensively to quantify the abundance of mRNA corresponding to different genes, and more recently high-throughput sequencing of cDNA (RNA-seq) has emerged as a powerful competitor. As the cost of sequencing decreases, it is conceivable that the use of RNA-seq for differential expression analysis will increase rapidly. To exploit the possibilities and address the challenges posed by this relatively new type of data, a number of software packages have been developed especially for differential expression analysis of RNA-seq data. RESULTS: We conducted an extensive comparison of eleven methods for differential expression analysis of RNA-seq data. All methods are freely available within the R framework and take as input a matrix of counts, i.e. the number of reads mapping to each genomic feature of interest in each of a number of samples. We evaluate the methods based on both simulated data and real RNA-seq data. CONCLUSIONS: Very small sample sizes, which are still common in RNA-seq experiments, impose problems for all evaluated methods and any results obtained under such conditions should be interpreted with caution. For larger sample sizes, the methods combining a variance-stabilizing transformation with the 'limma' method for differential expression analysis perform well under many different conditions, as does the nonparametric SAMseq method.
Resumo:
SUMMARY: We present a tool designed for visualization of large-scale genetic and genomic data exemplified by results from genome-wide association studies. This software provides an integrated framework to facilitate the interpretation of SNP association studies in genomic context. Gene annotations can be retrieved from Ensembl, linkage disequilibrium data downloaded from HapMap and custom data imported in BED or WIG format. AssociationViewer integrates functionalities that enable the aggregation or intersection of data tracks. It implements an efficient cache system and allows the display of several, very large-scale genomic datasets. AVAILABILITY: The Java code for AssociationViewer is distributed under the GNU General Public Licence and has been tested on Microsoft Windows XP, MacOSX and GNU/Linux operating systems. It is available from the SourceForge repository. This also includes Java webstart, documentation and example datafiles.
Resumo:
Monitoring thunderstorms activity is an essential part of operational weather surveillance given their potential hazards, including lightning, hail, heavy rainfall, strong winds or even tornadoes. This study has two main objectives: firstly, the description of a methodology, based on radar and total lightning data to characterise thunderstorms in real-time; secondly, the application of this methodology to 66 thunderstorms that affected Catalonia (NE Spain) in the summer of 2006. An object-oriented tracking procedure is employed, where different observation data types generate four different types of objects (radar 1-km CAPPI reflectivity composites, radar reflectivity volumetric data, cloud-to-ground lightning data and intra-cloud lightning data). In the framework proposed, these objects are the building blocks of a higher level object, the thunderstorm. The methodology is demonstrated with a dataset of thunderstorms whose main characteristics, along the complete life cycle of the convective structures (development, maturity and dissipation), are described statistically. The development and dissipation stages present similar durations in most cases examined. On the contrary, the duration of the maturity phase is much more variable and related to the thunderstorm intensity, defined here in terms of lightning flash rate. Most of the activity of IC and CG flashes is registered in the maturity stage. In the development stage little CG flashes are observed (2% to 5%), while for the dissipation phase is possible to observe a few more CG flashes (10% to 15%). Additionally, a selection of thunderstorms is used to examine general life cycle patterns, obtained from the analysis of normalized (with respect to thunderstorm total duration and maximum value of variables considered) thunderstorm parameters. Among other findings, the study indicates that the normalized duration of the three stages of thunderstorm life cycle is similar in most thunderstorms, with the longest duration corresponding to the maturity stage (approximately 80% of the total time).
Resumo:
L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.