898 resultados para cubic boron nitride (c-BN) films


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A balanced planar r.f. powered magnetron sputter source has been used to deposit carbon nitride films from a graphite target under various conditions. Sample temperature, bias voltage and nitrogen content in the gas mixture were varied. The effects of oxygen, methane and ammonia on the film growth were also studied. Special attention was paid to the effects of the deposition parameters on the structure of the films, in particular the hybridisation of the carbon and nitrogen bonding. The chemical bonding of the carbon and nitrogen atoms was studied by electron energy loss spectroscopy (EELS). The chemical composition was evaluated by Rutherford back-scattering. The intensity of transitions to π antibonding orbitals, as revealed by EELS, was found to increase with the nitrogen content in the films. Ion bombardment of the films during growth and the addition of oxygen or hydrogen-rich gases further increased the proportion of π bonds of both the carbon and nitrogen atoms. It is suggested that the increase in the transitions to μ antibond orbitals is to be explained by increased sp2 or possibly sp hybridisation of the carbon and nitrogen. Also, the effect of annealing on the bonding of nitrogen rich films after deposition was tested. The changes caused by nitrogen and deposition conditions are consistent with previous reports on the formation of paracyanogen structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A systematic study has been made of the growth of both hydrogenated amorphous silicon (a-Si:H) and silicon nitride (a-SiN) by electron cyclotron resonance plasma enhanced chemical vapour deposition (ECR-PECVD). In the case of a-SiN, helium and nitrogen gas is injected into the system such that it passes through the resonance zone. These highly ionised gases provide sufficient energy to ionise the silane gas, which is injected further downstream. It is demonstrated that a gas phase reaction occurs between the silane and nitrogen species. It is control of the ratio of silane to nitrogen in the plasma which is critical for the production of stoichiometric a-SiN. Material has been produced at 80°C with a Si:N ratio of 1:1.3 a breakdown strength of ∼6 MV cm-1 and resistivity of > 1014 Ω cm. In the case of a-Si:H, helium and hydrogen gas is injected into the ECR zone and silane is injected downstream. It is shown that control of the gas phase reactions is critical in this process also. a-Si:H has been deposited at 80 °C with a dark conductivity of 10-11 Ω-1 cm-1 and a photosensitivity of justbelowl 4×104. Such materials are suitable for use in thin film transistors on plastic substrates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the emergence of transparent electronics, there has been considerable advancement in n-type transparent semiconducting oxide (TSO) materials, such as ZnO, InGaZnO, and InSnO. Comparatively, the availability of p-type TSO materials is more scarce and the available materials are less mature. The development of p-type semiconductors is one of the key technologies needed to push transparent electronics and systems to the next frontier, particularly for implementing p-n junctions for solar cells and p-type transistors for complementary logic/circuits applications. Cuprous oxide (Cu2O) is one of the most promising candidates for p-type TSO materials. This paper reports the deposition of Cu2O thin films without substrate heating using a high deposition rate reactive sputtering technique, called high target utilisation sputtering (HiTUS). This technique allows independent control of the remote plasma density and the ion energy, thus providing finer control of the film properties and microstructure as well as reducing film stress. The effect of deposition parameters, including oxygen flow rate, plasma power and target power, on the properties of Cu2O films are reported. It is known from previously published work that the formation of pure Cu2O film is often difficult, due to the more ready formation or co-formation of cupric oxide (CuO). From our investigation, we established two key concurrent criteria needed for attaining Cu2O thin films (as opposed to CuO or mixed phase CuO/Cu2O films). First, the oxygen flow rate must be kept low to avoid over-oxidation of Cu2O to CuO and to ensure a non-oxidised/non-poisoned metallic copper target in the reactive sputtering environment. Secondly, the energy of the sputtered copper species must be kept low as higher reaction energy tends to favour the formation of CuO. The unique design of the HiTUS system enables the provision of a high density of low energy sputtered copper radicals/ions, and when combined with a controlled amount of oxygen, can produce good quality p-type transparent Cu2O films with electrical resistivity ranging from 102 to 104 Ω-cm, hole mobility of 1-10 cm2/V-s, and optical band-gap of 2.0-2.6 eV. These material properties make this low temperature deposited HiTUS Cu 2O film suitable for fabrication of p-type metal oxide thin film transistors. Furthermore, the capability to deposit Cu2O films with low film stress at low temperatures on plastic substrates renders this approach favourable for fabrication of flexible p-n junction solar cells. © 2011 Elsevier B.V. All rights reserved.