999 resultados para corn husk
Resumo:
In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.
Resumo:
Corn grits that were supplemented with isovaleraldehyde, ethyl butyrate, butyric acid and flavour enhancers were extruded under different processing conditions. Volatile compounds retained in the extrudates were isolated by dynamic headspace and analysed using gas chromatographymass spectrometry. The expansion ratio, density and cut force to break down the extrudates were evaluated and aroma intensity was assessed using a multisample difference test. Butyric acid showed the greatest retention (96.4%), regardless of the extrusion conditions. All compounds were better retained when samples were extruded at 20% feed moisture and 90 degrees C processing temperature (2.981.0%), conditions that also resulted in greater aromatic intensity (moderate to moderate-strong intensity). The addition of volatile compounds reduced the expansion ratio and cut force, whereas the addition of flavour enhancers increased the expansion ratio but reduced ethyl butyrate and butyric acid retention.
Resumo:
With the increasing emphasis on health and well-being, nutrition aspects need to be incorporated as a dimension of product development. Thus, the production of a high-fibre content snack food from a mixture of corn and flaxseed flours was optimized by response surface methodology. The independent variables considered in this study were: feed moisture, process temperature and flaxseed flour addition, as they were found to significantly impact the resultant product. These variables were studied according to a rotatable composite design matrix (-1.68, -1, 0, 1, 1.68). Response variable was the expansion ratio since it has been highly correlated with acceptability. The optimum corn-flaxseed snack obtained presented a sevenfold increase in dietary fibre, almost 100% increase in protein content compared to the pure corn snack, and yielded an acceptability score of 6.93. This acceptability score was similar to those observed for corn snack brands in the market, indicating the potential commercial use of this new product, which can help to increase the daily consumption of dietary fibre.
Resumo:
The objective of this study was to evaluate the presence of fungi and mycotoxins (aflatoxins and cyclopiazonic acid) in Brazil nut samples collected in different states of the Brazilian Amazon region: Acre, Amazonas, Amapa, and Para. A total of 200 husk samples and 200 almond samples were inoculated onto Aspergillus flavus-parasiticus agar for the detection of fungi. Mycotoxins were analyzed by high-performance liquid chromatography. The mycobiota comprised the following fungi, in decreasing order of frequency: almonds - Phialemonium spp. (54%), Penicillium spp. (16%), Fusarium spp. (13%), Phaeoacremonium spp. (11%), and Aspergillus spp. (4%), husks - Phialemonium spp. (62%), Phaeoacremonium spp. (11%), Penicillium spp. (10%), Fusarium spp. (9%), and Aspergillus spp. A polyphasic approach was used for identification of Aspergillus species. Aflatoxins were detected in 22 (11%) of the 200 almond samples, with 21 samples presenting aflatoxin B-1 levels above 8 mu g/kg, the limit established by the European Commission for Brazil nuts for further processing. Nineteen (9.5%) of the 200 husk samples contained aflatoxins, but at levels lower than those seen in almonds. Cyclopiazonic acid (CPA) was detected in 44 (22%) almond samples, with levels ranging from 98.65 to 1612 mu g/kg. Aspergillus nomius and A. flavus were the most frequent Aspergillus species. The presence of fungi does not necessarily imply mycotoxin contamination, but almonds of the Brazil nut seem to be a good substrate for fungal growth. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Response surface methodology (RSM), based on a 2(2) full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 degrees C for 90 min.(-) Both DEO concentration and corn stover moisture content were statistically significant at 99% confidence level. The maximum xylose recovery by the response surface methodology was achieved employing both DEO concentration and corn stover moisture at near their highest levels area. We amplified this area by using an overlay plot as a graphical optimization using a response of xylose recovery more than 80%. The mathematical statistical model was validated by testing a specific condition in the satisfied overlay plot area. Experimentally, a maximum xylose recovery (81.2%) was achieved by using initial corn stover moisture of 60% and a DEO concentration of 4% w/w. The mathematical statistical model showed that xylose recovery increases during DEO corn stover acid hydrolysis as the corn stover moisture level increases. This observation could be important during the harvesting of corn before it is fully dried in the field. The corn stover moisture was an important variable to improve xylose recovery by DEO acid hydrolysis. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work was to evaluate corn gluten meal (CGM) as a substitute for fish meal in diets for striped catfish (Pseudoplatystoma fasciatum) juveniles. Eight isonitrogenous (46% crude protein) and isoenergetic (3,450 kcal kg(-1) digestible energy) diets, with increasing levels of CGM - 0, 6, 12, 18, 24, 30, 36, and 42%-, were fed to juvenile striped catfish (113.56 +/- 5.10 g) for seven weeks. Maximum values for weight gain, specific growth rate, protein efficiency ratio and feed conversion ratio, evaluated by polynomial quadratic regression, were observed with 10.4, 11.4, 15.4 and 15% of CGM inclusion, respectively. Feed intake decreased significantly from 0.8% CGM. Mesenteric fat index and body gross energy decreased linearly with increasing levels of CGM; minimum body protein contents were observed with 34.1% CGM. Yellow pigmentation of fillets significantly increased until 26.5% CGM, and decreased from this point forth. Both plasma glucose and protein concentrations decreased with increased CGM levels. The inclusion of 10-15% CGM promotes optimum of striped catfish juveniles depending on the parameter evaluated. Yellow coloration in fillets produced by CGM diets can have marketing implications.
Resumo:
The X-ray test is a precise, fast and non-destructive method to detect mechanical damage in seeds. In the present study, the efficiency of X-ray analysis in identifying the extent of mechanical damage in sweet corn seeds and its relationship with germination and vigor was evaluated. Hybrid 'SWB 551' (sh2) seeds with round (R) and flat (F) shapes were classified as large (L), medium (M1, M2 and M3) and small (S), using sieves with round and oblong screens. After artificial exposure to different levels of damage (0, 1, 3, 5 and 7 impacts), seeds were X-rayed (15 kV, 5 min) and submitted to germination (25 °C/5 days) and cold (10 °C/7 days) tests. Digital images of normal and abnormal seedlings and ungerminated seeds from germination and cold tests were jointly analyzed with the seed X-ray images. Results showed that damage affecting the embryonic axis resulted in abnormal seedlings or dead seeds in the germination and cold tests. The X-ray analysis is efficient for identifying mechanical damage in sweet corn seeds, allowing damage severity to be associated with losses in germination and vigor.
Resumo:
Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is considered to be the main pest of maize crops in Brazil. Entomopathogenic nematodes (EPN) may be used to control this pest and exhibit different, unique abilities to search for their hosts. The movement of EPN in relation to S. frugiperda was evaluated. To test for horizontal movement, a styrofoam enclosure filled with sand was divided into segments, nematodes were placed at the entrance to the enclosure and a larva was placed at the end of each division. The same approach was used to evaluate vertical movement; however, PVC pipes were used in this case. In general, the mortality was inversely proportional to the initial distance between host and nematodes. In the vertical displacement test, both nematodes were able to kill the larvae up to a distance of 25 cm. Therefore, the infective juveniles of H. amazonensis and S. arenarium can search out, infect and kill larvae of S. frugiperda at distances of up to 60 cm and 25 cm of horizontal and vertical displacement, respectively.
Resumo:
In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.
Resumo:
The objective of this study was to evaluate the chemical composition and dry matter in vitro digestibility of stem, leaf, straw, cob and kernel fractions of eleven corn (Zea mays) cultivars, harvested at two cutting heights. The experiment was designed as randomized blocks, with three replicates, in a 2 × 11 factorial arrangement (eleven cultivars and two cutting heights). The corn cultivars evaluated were D 766, D 657, D 1000, P 3021, P 3041, C 805, C 333, AG 5011, FOR 01, CO 9621 and BR 205, harvested at a low cutting height (5 cm above ground) and a high cutting height (5 cm below the first ear insertion). Cutting height influenced the dry matter content of the stem fraction, which was lower (23.95%) in plants harvested at the low, than in plants harvested at the high cutting height (26.28%). The kernel fraction had the highest dry matter in vitro digestibility (85.13%), while cultivars did not differ between each other. Cob and straw were the fractions with the highest level of neutral detergent fiber (80.74 and 79.77%, respectively) and the lowest level of crude protein (3.84% and 3.69%, respectively). The leaf fraction had the highest crude protein content, both for plants of low and high cuttings (15.55% and 16.20%, respectively). The increase in the plant cutting height enhanced the dry matter content and dry matter in vitro digestibility of stem fraction, but did not affect the DM content of the leaf fraction.
Resumo:
Four castrated crossbred horses were used in a randomized block design to study the use of indigestible internal markers iNDF and iADF obtained in situ (from bovines) or in vivo (from equines). Treatments consisted of determining digestibility by the direct method comprising total feces collection (TC) and by the indirect method comprising internal markers iNDF and iADF obtained by in situ incubation in bovine rumen or in vivo by the mobile nylon bag (MNB) technique with horses. iNDF-IV and iADF-IV resulted in better marker recovery rate (RR) (91.50%), similar to TC. The in situ technique resulted in lower RR values for the two indigestible markers, averaging 86.50% (p < 0.05). Estimates of the nutrient coefficient of digestibility (CD) were adequately predicted by iADF-IV, for horses fed on hay exclusively, with rates 46.41, 48.16, 47.92 and 45.51% for dry matter (DM), organic matter (OM), FDN and gross energy, respectively. Results show that MNB may be used to obtain iADF in horses fed on coast-cross hay exclusively, whereas NDFi and ADFi were selected for horses fed on mixed diets to predict the coefficient of nutrient digestibility.
Resumo:
Aflatoxin (AFL) contamination of corn is a serious economic and food security issue. Although a variety of technical solutions for reducing AFL contamination of corn have been proposed, only a few have produced satisfactory results. A successful approach is a biocontrol strategy consisting of using non-flatoxigenic strains of Aspergillus flavus to replace indigenous AFL-producing isolates. The main objective of the present thesis was to investigate the dynamic and contamination of AFL/A. flavus in corn in Northern Italy. The study also investigated the role of the key-pest of corn, the European Corn Borer (ECB), on AFL contamination and dispersal of A. flavus propagules in corn. Finally, the study evaluated the feasibility of bioplastic-based granules entrapping a non-aflatoxigenic A. flavus strain for the biocontrol of this fungus in corn. The 2-year field study demonstrated the efficacy of the bioplastic formulation to reduce AFL contamination in corn. More precisely, although AFL contamination varied among the two years, application of 15 and 30 kg ha-1 of granules reduced AFL contamination to up 60 and 85% in 2009 and 2010 respectively. Microbiological analysis showed that the relative abundance of non-aflatoxigenic soil isolates significantly increased after 1 month from granules application (mid-May) and throughout the corn-growing season. These findings were consistent with data obtained using a bioplastic-based bait specifically developed to selectively isolate Aspergilli from soil and other environmental samples. In addition, field and laboratory evaluations showed that the level of damages produced by ECB larvae were not significantly correlated to A. flavus infestation and AFL contamination. Taking together, these findings demonstrated that AFL contamination of corn in Northern Italy was variable, but above the EU limit for human consumption. First proposed in the USA, this study showed the practical possibility of this formulation to be use for reducing AFL contamination in corn in the EU.
Resumo:
A long-term study over 25 months was conducted to evaluate the effects of genetically modified corn on performance of lactating dairy cows. Thirty-six dairy cows were assigned to two feeding groups and fed with diets based on whole-crop silage, kernels and whole-crop cobs from Bt-corn (Bt-MON810) or its isogenic not genetically modified counterpart (CON) as main components. The study included two consecutive lactations. There were no differences in the chemical composition and estimated net energy content of Bt-MON810 and CON corn components and diets. CON feed samples were negative for the presence of Cry1Ab protein, while in Bt-MON810 feed samples the Cry1Ab protein was detected. Cows fed Bt-MON810 corn had a daily Cry1Ab protein intake of 6.0 mg in the first lactation and 6.1 mg in the second lactation of the trial. Dry matter intake (DMI) was 18.8 and 20.7 kg/cow per day in the first and the second lactation of the trial, with no treatment differences. Similarly, milk yield (23.8 and 29.0 kg/cow per day in the first and the second lactation of the trial) was not affected by dietary treatment. There were no consistent effects of feeding MON810 or its isogenic CON on milk composition or body condition. Thus, the present long-term study demonstrated the compositional and nutritional equivalence of Bt-MON810 and its isogenic CON.