917 resultados para constant curvature
Resumo:
2005
Resumo:
We show that if a language is recognized within certain error bounds by constant-depth quantum circuits over a finite family of gates, then it is computable in (classical) polynomial time. In particular, our results imply EQNC^0 ⊆ P, where EQNC^0 is the constant-depth analog of the class EQP. On the other hand, we adapt and extend ideas of Terhal and DiVincenzo [?] to show that, for any family
Resumo:
We present a distributed indexing scheme for peer to peer networks. Past work on distributed indexing traded off fast search times with non-constant degree topologies or network-unfriendly behavior such as flooding. In contrast, the scheme we present optimizes all three of these performance measures. That is, we provide logarithmic round searches while maintaining connections to a fixed number of peers and avoiding network flooding. In comparison to the well known scheme Chord, we provide competitive constant factors. Finally, we observe that arbitrary linear speedups are possible and discuss both a general brute force approach and specific economical optimizations.
Resumo:
Solar Energy is a clean and abundant energy source that can help reduce reliance on fossil fuels around which questions still persist about their contribution to climate and long-term availability. Monolithic triple-junction solar cells are currently the state of the art photovoltaic devices with champion cell efficiencies exceeding 40%, but their ultimate efficiency is restricted by the current-matching constraint of series-connected cells. The objective of this thesis was to investigate the use of solar cells with lattice constants equal to InP in order to reduce the constraint of current matching in multi-junction solar cells. This was addressed by two approaches: Firstly, the formation of mechanically stacked solar cells (MSSC) was investigated through the addition of separate connections to individual cells that make up a multi-junction device. An electrical and optical modelling approach identified separately connected InGaAs bottom cells stacked under dual-junction GaAs based top cells as a route to high efficiency. An InGaAs solar cell was fabricated on an InP substrate with a measured 1-Sun conversion efficiency of 9.3%. A comparative study of adhesives found benzocyclobutene to be the most suitable for bonding component cells in a mechanically stacked configuration owing to its higher thermal conductivity and refractive index when compared to other candidate adhesives. A flip-chip process was developed to bond single-junction GaAs and InGaAs cells with a measured 4-terminal MSSC efficiency of 25.2% under 1-Sun conditions. Additionally, a novel InAlAs solar cell was identified, which can be used to provide an alternative to the well established GaAs solar cell. As wide bandgap InAlAs solar cells have not been extensively investigated for use in photovoltaics, single-junction cells were fabricated and their properties relevant to PV operation analysed. Minority carrier diffusion lengths in the micrometre range were extracted, confirming InAlAs as a suitable material for use in III-V solar cells, and a 1-Sun conversion efficiency of 6.6% measured for cells with 800 nm thick absorber layers. Given the cost and small diameter of commercially available InP wafers, InGaAs and InAlAs solar cells were fabricated on alternative substrates, namely GaAs. As a first demonstration the lattice constant of a GaAs substrate was graded to InP using an InxGa1-xAs metamorphic buffer layer onto which cells were grown. This was the first demonstration of an InAlAs solar cell on an alternative substrate and an initial step towards fabricating these cells on Si. The results presented offer a route to developing multi-junction solar cell devices based on the InP lattice parameter, thus extending the range of available bandgaps for high efficiency cells.
Resumo:
Absolute line intensities in the v6 and v8 interacting bands of trans-HCOOH, observed near 1105.4 and 1033.5 cm -1, respectively, and the dissociation constant of the formic acid dimer (HCOOH)2 have been measured using Fourier transform spectroscopy at a resolution of 0.002 cm-1. Eleven spectra of formic acid, at 296.0(5) K and pressures ranging from 14.28(25) to 314.0(24) Pa, have been recorded between 600 and 1900 cm-1 with an absorption path length of 19.7(2) cm. 437 integrated absorption coefficients have been measured for 72 lines in the v6 band. Analysis of the pressure dependence yielded the dissociation constant of the formic acid dimer, k p=361(45) Pa, and the absolute intensity of the 72 lines of HCOOH. The accuracy of these results was carefully estimated. The absolute intensities of four lines of the weak v8 band were also measured. Using an appropriate theory, the integrated intensity of the v6 and v 8 bands was determined to be 3.47 × 1017 and 4.68 × 10-19 cm-1/(molecule cm-1) respectively, at 296 K. Both the dissociation constant and integrated intensities were compared to earlier measurements. © 2007 American Institute of Physics.
Resumo:
The study of real hypersurfaces in pseudo-Riemannian complex space forms and para-complex space forms, which are the pseudo-Riemannian generalizations of the complex space forms, is addressed. It is proved that there are no umbilic hypersurfaces, nor real hypersurfaces with parallel shape operator in such spaces. Denoting by J be the complex or para-complex structure of a pseudo-complex or para-complex space form respectively, a non-degenerate hypersurface of such space with unit normal vector field N is said to be Hopf if the tangent vector field JN is a principal direction. It is proved that if a hypersurface is Hopf, then the corresponding principal curvature (the Hopf curvature) is constant. It is also observed that in some cases a Hopf hypersurface must be, locally, a tube over a complex (or para-complex) submanifold, thus generalizing previous results of Cecil, Ryan and Montiel.
Resumo:
In this note, we consider the scheduling problem of minimizing the sum of the weighted completion times on a single machine with one non-availability interval on the machine under the non-resumable scenario. Together with a recent 2-approximation algorithm designed by Kacem [I. Kacem, Approximation algorithm for the weighted flow-time minimization on a single machine with a fixed non-availability interval, Computers & Industrial Engineering 54 (2008) 401–410], this paper is the first successful attempt to develop a constant ratio approximation algorithm for this problem. We present two approaches to designing such an algorithm. Our best algorithm guarantees a worst-case performance ratio of 2+ε. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.
Resumo:
The characterization of thermocouple sensors for temperature measurement in varying-flow environments is a challenging problem. Recently, the authors introduced novel difference-equation-based algorithms that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. In particular, a linear least squares (LS) lambda formulation of the characterization problem, which yields unbiased estimates when identified using generalized total LS, was introduced. These algorithms assume that time constants do not change during operation and are, therefore, appropriate for temperature measurement in homogenous constant-velocity liquid or gas flows. This paper develops an alternative ß-formulation of the characterization problem that has the major advantage of allowing exploitation of a priori knowledge of the ratio of the sensor time constants, thereby facilitating the implementation of computationally efficient algorithms that are less sensitive to measurement noise. A number of variants of the ß-formulation are developed, and appropriate unbiased estimators are identified. Monte Carlo simulation results are used to support the analysis.
Resumo:
In shaded scenes surface features can appear either concave or convex, depending upon the viewers judment about the direction of the prevailing illuminant. If other curvature cues are added to the image this ambiguity can be removed. However, it is not clear to what extent, if any, illuminant positin exerts an influence on the perceived magnitude of surface curvature. Subjects were presented with pairs of spherical surface patches in a curavture matching task. The patches were defined by shading and texture cues. The percevied curvature of a standard patch was measured as a function of light source position. We found a clear effect of light source position on apparent curvature. Perceived curvature decreased as light source tilt increased and as light source slant decreased. We also found that the strength of this effect is determined partly by a surface's reflectance function and partly by the relative weight of the texture cue. When a specular component was added to the stimuli, the effect of light source orientation was weakened. The weight of the texture cue was manipulated by disrupting the regular distribution of texture elements. We found an inverse relationship between the strength of the effecct and the weight of the texture cue: lowering the texture cue weight resulted in an enhancement of the illuminant position effect.
Resumo:
Simultaneous contrast effects have been found across a wide range of visual dimensions. We describe a simultaneous contrast effect - three-dimensional curvature contrast - in which the apparent curvature of a surface defined by shading and texture information is influenced by the curvature of a surrounding surface. The effect is strong and easily measurable. We asked whether the effect depends upon the presence of contrast at the level of the internal representation of surface curvature or whether it could be better explained in terms of local changes in the apparent brightness of regions within the test patches induced by luminance transition at the borders. The experimental results suggest that, whicle these luminance-contrast-induced effects do contribute to the observed changes in perceived curvature, there are additional influences. In particular changes in perceived curvature induced by a pattern of curved patches were eliminated or considerably weakened when the inducing pattern was transformed into a photographic negative, a procedure which disrupts the apparent three-dimensional structure of the surface patches without changing their brightness contrast. This suggests a component of the illusion involves comparisons at the level of representation of surface curvature. The observation that three-dimensional curvature contrast presists when the inducing surfaces are spatially separate from the test surface suggests that shape perception involves global, as well as local, operations.