987 resultados para common pool resource
Resumo:
Mortality due to chronic diseases has been increasing in all regions of Brazil with corresponding decreases in mortality from infectious diseases. The geographical variation in proportionate mortality for chronic diseases for 17 Brazilian state capitals for the year 1985 and their association with socio-economic variables and infectious disease was studied. Calculations were made of correlation coefficients of proportionate mortality for adults of 30 years or above due to ischaemic heart disease, stroke and cancer of the lung, the breast and stomach with 3 socio-economic variables, race, and mortality due to infectious disease. Linear regression analysis included as independent variables the % of illiteracy, % of whites, % of houses with piped water, mean income, age group, sex, and % of deaths caused by infectious disease. The dependent variables were the % of deaths due to each one of the chronic diseases studied by age-sex group. Chronic diseases were an important cause of death in all regions of Brazil. Ischaemic heart diseases, stroke and malignant neoplasms accounted for more than 34% of the mortality in each of the 17 capitals studied. Proportionate cause-specific mortality varied markedly among state capitals. Ranges were 6.3-19.5% for ischaemic heart diseases, 8.3-25.4% for stroke, 2.3-10.4% for infections and 12.2-21.5% for malignant neoplasm. Infectious disease mortality had the highest (p < 0.001) correlation with all the four socio-economic variables studied and ischaemic heart disease showed the second highest correlation (p < 0.05). Higher socio-economic level was related to a lower % of infectious diseases and a higher % of ischaemic heart diseases. Mortality due to breast cancer and stroke was not associated with socio-economic variables. Multivariate linear regression models explained 59% of the variance among state capitals for mortality due to ischaemic heart disease, 50% for stroke, 28% for lung cancer, 24% for breast cancer and 40% for stomach cancer. There were major differences in the proportionate mortality due to chronic diseases among the capitals which could not be accounted for by the social and environmental factors and by the mortality due to infectious disease.
Resumo:
The study’s main purpose was the assessment of the environmental fungal contamination, the exploration of possible associations between related environmental variables and the study of the relationship between fungal contamination of air and surfaces. A descriptive study was developed based upon air and surfaces monitoring for fungal contamination in ten indoor gymnasiums with a swimming pool located in Lisbon’s urban area. Fifty 200 litres air samples and 120 surface swabs were collected. Surfaces samples were collected before and after cleaning and disinfection and temperature and relative humidity values were registered during the collection period. Twenty five different species of fungi were identified in the air samples, being the three most commonly isolated genera the following: Cladosporium (36.6%), Penicillium (19.0%) and Aspergillus (10.2%). Thirty-seven different species of fungi were identified in the surface samples. Fusarium sp. was the most frequent genera before (19.1%) and after (17.2%) cleaning and disinfection. There was a significant association between the numbers of visitors and the fungal contamination determined in the surface samples (p<0.05). There was no significant association (p>0.05) between the contamination encountered in the air samples and the one registered in the surface samples and between the fungal contamination and the temperature or relative humidity measured on location. The data obtained enabled the assessment of the establishment’s fungal contamination and led the authors to conclude, consequently, that physical activity, which generally promotes health, can in fact be challenged by this factor.
Resumo:
Papers on child-care attendance as a risk factor for acute respiratory infections and diarrhea were reviewed. There was great variety among the studies with regard to the design, definition of exposure and definition of outcomes. All the traditional epidemiological study designs have been used. The studies varied in terms of how child-care attendance in general was defined, and for different settings. These definitions differed especially in relation to the minimum time of attendance required. The outcomes were also defined and measured in several different ways. The analyses performed were not always appropriate, leading to sets of results of uneven quality, and composed of different measures of association relating different exposures and outcomes, that made summarizing difficult. Despite that, the results reported were remarkably consistent. Only two of the papers reviewed failed to show some association between child-care attendance and increased acute respiratory infections, or diarrhea. On the other hand, the magnitude of the associations reported varied widely, especially for lower respiratory infections. Taken together, the studies so far published provide evidence that children attending child-care centers, especially those under three years of age, are at a higher risk of upper respiratory infections, lower respiratory infections, and diarrhea. The studies were not consistent, however, in relation to attendance at child-care homes. Children in such settings were sometimes similar to those in child-care centers, sometimes similar to those cared for at home, and sometimes presented an intermediate risk.
Resumo:
Preliminary version
Resumo:
This essay sees “through” an object produced by Portuguese folklore: the moliceiro boat of Ria de Aveiro, whose most original characteristic is the group of four different panels painted on each boat. These unique panels have echoed national mythologies and have undergone influence from institutional channels of instruction and propaganda for much of the twentieth century. We will analyse how this boat expresses the inventory of a community’s identity, imagination, and practices.
Resumo:
Object-oriented programming languages presently are the dominant paradigm of application development (e. g., Java,. NET). Lately, increasingly more Java applications have long (or very long) execution times and manipulate large amounts of data/information, gaining relevance in fields related with e-Science (with Grid and Cloud computing). Significant examples include Chemistry, Computational Biology and Bio-informatics, with many available Java-based APIs (e. g., Neobio). Often, when the execution of such an application is terminated abruptly because of a failure (regardless of the cause being a hardware of software fault, lack of available resources, etc.), all of its work already performed is simply lost, and when the application is later re-initiated, it has to restart all its work from scratch, wasting resources and time, while also being prone to another failure and may delay its completion with no deadline guarantees. Our proposed solution to address these issues is through incorporating mechanisms for checkpointing and migration in a JVM. These make applications more robust and flexible by being able to move to other nodes, without any intervention from the programmer. This article provides a solution to Java applications with long execution times, by extending a JVM (Jikes research virtual machine) with such mechanisms. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Smart Grids (SGs) appeared as the new paradigm for power system management and operation, being designed to integrate large amounts of distributed energy resources. This new paradigm requires a more efficient Energy Resource Management (ERM) and, simultaneously, makes this a more complex problem, due to the intensive use of distributed energy resources (DER), such as distributed generation, active consumers with demand response contracts, and storage units. This paper presents a methodology to address the energy resource scheduling, considering an intensive use of distributed generation and demand response contracts. A case study of a 30 kV real distribution network, including a substation with 6 feeders and 937 buses, is used to demonstrate the effectiveness of the proposed methodology. This network is managed by six virtual power players (VPP) with capability to manage the DER and the distribution network.
Resumo:
The reactive power management is an important task in future power systems. The control of reactive power allows the increase of distributed energy resources penetration as well as the optimal operation of distribution networks. Currently, the control of reactive power is only controlled in large power units and in high and very high voltage substations. In this paper a reactive power control in smart grids paradigm is proposed, considering the management of distributed energy resources and of the distribution network by an aggregator namely Virtual Power Player (VPP).
Resumo:
The introduction of new distributed energy resources, based on natural intermittent power sources, in power systems imposes the development of new adequate operation management and control methods. This paper proposes a short-term Energy Resource Management (ERM) methodology performed in two phases. The first one addresses the hour-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. Both phases consider the day-ahead resource scheduling solution. The ERM scheduling is formulated as an optimization problem that aims to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixed-integer non-linear programming approach and by a heuristic approach based on genetic algorithms. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units has been implemented in a PSCADbased simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.
Resumo:
The smart grid concept appears as a suitable solution to guarantee the power system operation in the new electricity paradigm with electricity markets and integration of large amounts of Distributed Energy Resources (DERs). Virtual Power Player (VPP) will have a significant importance in the management of a smart grid. In the context of this new paradigm, Electric Vehicles (EVs) rise as a good available resource to be used as a DER by a VPP. This paper presents the application of the Simulated Annealing (SA) technique to solve the Energy Resource Management (ERM) of a VPP. It is also presented a new heuristic approach to intelligently handle the charge and discharge of the EVs. This heuristic process is incorporated in the SA technique, in order to improve the results of the ERM. The case study shows the results of the ERM for a 33-bus distribution network with three different EVs penetration levels, i. e., with 1000, 2000 and 3000 EVs. The results of the proposed adaptation of the SA technique are compared with a previous SA version and a deterministic technique.
Resumo:
This paper proposes a simulated annealing (SA) approach to address energy resources management from the point of view of a virtual power player (VPP) operating in a smart grid. Distributed generation, demand response, and gridable vehicles are intelligently managed on a multiperiod basis according to V2G user´s profiles and requirements. Apart from using the aggregated resources, the VPP can also purchase additional energy from a set of external suppliers. The paper includes a case study for a 33 bus distribution network with 66 generators, 32 loads, and 1000 gridable vehicles. The results of the SA approach are compared with a methodology based on mixed-integer nonlinear programming. A variation of this method, using ac load flow, is also used and the results are compared with the SA solution using network simulation. The proposed SA approach proved to be able to obtain good solutions in low execution times, providing VPPs with suitable decision support for the management of a large number of distributed resources.
Resumo:
Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.
Resumo:
Energy resource scheduling becomes increasingly important, as the use of distributed resources is intensified and massive gridable vehicle use is envisaged. The present paper proposes a methodology for dayahead energy resource scheduling for smart grids considering the intensive use of distributed generation and of gridable vehicles, usually referred as Vehicle- o-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with V2G owners. It takes into account these contracts, the user´s requirements subjected to the VPP, and several discharge price steps. Full AC power flow calculation included in the model allows taking into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33 bus distribution network and V2G is used to illustrate the good performance of the proposed method.
Resumo:
The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .
Resumo:
Energy resources management can play a very relevant role in future power systems in a SmartGrid context, with intensive penetration of distributed generation and storage systems. This paper deals with the importance of resource management in incident situations. The paper presents DemSi, an energy resources management simulator that has been developed by the authors to simulate electrical distribution networks with high distributed generation penetration, storage in network points and customers with demand response contracts. DemSi is used to undertake simulations for an incident scenario, evidencing the advantages of adequately using flexible contracts, storage, and reserve in order to limit incident consequences.