870 resultados para cold storage,
Resumo:
We compare the performance of two different low-storage filter diagonalisation (LSFD) strategies in the calculation of complex resonance energies of the HO2, radical. The first is carried out within a complex-symmetric Lanczos subspace representation [H. Zhang, S.C. Smith, Phys. Chem. Chem. Phys. 3 (2001) 2281]. The second involves harmonic inversion of a real autocorrelation function obtained via a damped Chebychev recursion [V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107 (1997) 6756]. We find that while the Chebychev approach has the advantage of utilizing real algebra in the time-consuming process of generating the vector recursion, the Lanczos, method (using complex vectors) requires fewer iterations, especially for low-energy part of the spectrum. The overall efficiency in calculating resonances for these two methods is comparable for this challenging system. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We develop a new iterative filter diagonalization (FD) scheme based on Lanczos subspaces and demonstrate its application to the calculation of bound-state and resonance eigenvalues. The new scheme combines the Lanczos three-term vector recursion for the generation of a tridiagonal representation of the Hamiltonian with a three-term scalar recursion to generate filtered states within the Lanczos representation. Eigenstates in the energy windows of interest can then be obtained by solving a small generalized eigenvalue problem in the subspace spanned by the filtered states. The scalar filtering recursion is based on the homogeneous eigenvalue equation of the tridiagonal representation of the Hamiltonian, and is simpler and more efficient than our previous quasi-minimum-residual filter diagonalization (QMRFD) scheme (H. G. Yu and S. C. Smith, Chem. Phys. Lett., 1998, 283, 69), which was based on solving for the action of the Green operator via an inhomogeneous equation. A low-storage method for the construction of Hamiltonian and overlap matrix elements in the filtered-basis representation is devised, in which contributions to the matrix elements are computed simultaneously as the recursion proceeds, allowing coefficients of the filtered states to be discarded once their contribution has been evaluated. Application to the HO2 system shows that the new scheme is highly efficient and can generate eigenvalues with the same numerical accuracy as the basic Lanczos algorithm.
Resumo:
Recent progress in the production, purification, and experimental and theoretical investigations of carbon nanotubes for hydrogen storage are reviewed. From the industrial point of view, the chemical vapor deposition process has shown advantages over laser ablation and electric-arc-discharge methods. The ultimate goal in nanotube synthesis should be to gain control over geometrical aspects of nanotubes, such as location and orientation, and the atomic structure of nanotubes, including helicity and diameter. There is currently no effective and simple purification procedure that fulfills all requirements for processing carbon nanotubes. Purification is still the bottleneck for technical applications, especially where large amounts of material are required. Although the alkali-metal-doped carbon nanotubes showed high H-2 Weight uptake, further investigations indicated that some of this uptake was due to water rather than hydrogen. This discovery indicates a potential source of error in evaluation of the storage capacity of doped carbon nanotubes. Nevertheless, currently available single-wall nanotubes yield a hydrogen uptake value near 4 wt% under moderate pressure and room temperature. A further 50% increase is needed to meet U.S. Department of Energy targets for commercial exploitation. Meeting this target will require combining experimental and theoretical efforts to achieve a full understanding of the adsorption process, so that the uptake can be rationally optimized to commercially attractive levels. Large-scale production and purification of carbon nanotubes and remarkable improvement of H-2 storage capacity in carbon nanotubes represent significant technological and theoretical challenges in the years to come.
Resumo:
The aim of this project was to investigate the properties of copper rich Cu-Fe-Cr alloys for the purpose of developing a new cost effective, high-strength, high-conductivity copper alloy. This paper reports on the influence of cold work. The age hardening response of the Cu-0.7%Cr-2.0%Fe alloy was minimal, but the resistance to softening was superior to that reported for any commercial high-strength, high-conductivity (HSHC) copper alloy with comparable mechanical and electrical properties. For example, an excess of 85% of the original hardness of the 40% cold worked alloy is retained after holding at 700 degreesC for 1 hour, whereas commercial HSHC Cu-Fe-P alloys have been reported to soften significantly after 1 hours exposure at less than 500 degreesC. The Cu-0.7Cr-2.0Fe alloy would therefore be expected to be more suitable for applications with a significant risk of exposure to elevated temperatures. Optical microscope examination of cold worked and aged microstructures confirmed the high resistance to recrystallization for Cu-0.7%Cr-2.0%Fe. The Zener-Smith drag term, predicting the pinning effect of second phase particles on dislocations in cold worked microstructures, was calculated using the precipitate characteristics obtained from TEM, WDS and resistivity measurements. The pinning effect of the precipitate dispersions in the peak-aged condition was determined to be essentially equivalent for the Cu-0.7%Cr-0.3%Fe and Cu-0.7%Cr-2.0%Fe alloys. A lower recrystallisation temperature in the Cu-0.7%Cr-0.3%Fe alloy was therefore attributed to faster coarsening kinetics of the secondary precipitates resulting from a higher Cr concentration in the precipitates at lower iron content. (C) 2001 Kluwer Academic Publishers.
Resumo:
The in vitro efficacy of several fungicides against Botryosphaeria dothidea (syn. Dothiorella dominicana) and their in vivo efficacy in controlling mango cv. Kensington Pride stem-end rot on partial-pressure infiltration v. dip treatment of green mature fruit was evaluated. In vitro sensitivity of B. dothidea to Benlate (benomyl), Sportak (prochloraz) and Scala (pyrimethanil) at 10 dilutions of the manufacturer's recommended rate was first determined at typical cold (13degreesC) and shelf (23degreesC) storage temperatures. The effectiveness of partial-pressure infiltration and conventional hot (52degreesC) or cold (26degreesC) dipping of fruit after harvest was then evaluated using the commercially recommended rate for each fungicide. In vitro, Benlate and Sportak prevented the growth of B. dothidea at both storage temperatures and at all concentrations, while Scala partially controlled growth of the pathogen. Benlate was the most effective fungicide for stem-end rot control. Sportak and Scala resulted in stem-end rot control when applied by partial-pressure infiltration, but not as dips. Partial-pressure infiltration holds promise for enhancing the efficacy of otherwise less effective but alternative fungicides for control of stem-end rot diseases.
Resumo:
A semi-nested polymerase chain reaction (PCR) was evaluated for detection of Japanese encephalitis (JE) virus in infected mosquitoes stored under simulated northern Australian summer conditions. The effect of silica gel, thymol, and a combination of the two on RNA stability and virus viability in dead mosquitoes were also examined. While JE virus RNA was relatively stable in mosquitoes held for up to 14 days after death, viable virus was not detected after day 1. Thymol vapor inhibited fungal contamination. Detection of single mosquitoes infected with JE virus in large pools of mosquitoes was also investigated. Single laboratory-infected mosquitoes were detected in pools of less than or equal to200 mosquitoes and in pools diluted to 0.2/100 and 0.1/100 mosquitoes, using the semi-nested PCR. However, the ability to detect live virus decreased as pool size increased. The semi-nested PCR proved more expensive than virus isolation for pools of 100 mosquitoes. However, the semi-nested PCR was faster and more economical using larger pools. Results indicate that surveillance of JE virus in mosquitoes using the semi-nested PCR is an alternative to monitoring seroconversions in sentinel pigs.
Resumo:
The paper presents methods for measurement of convective heat transfer distributions in a cold flow, supersonic blowdown wind tunnel. The techniques involve use of the difference between model surface temperature and adiabatic wall temperature as the driving temperature difference for heat transfer and no active heating or cooling of the test gas or model is required. Thermochromic liquid crystals are used for surface temperature indication and results presented from experiments in a Mach 3 flow indicate that measurements of the surface heat transfer distribution under swept shock wave boundary layer interactions can be made. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Reproductive data from southern Queensland indicate that vitellogenesis in female Chelonia mydas takes approximately 8 months and is followed by a migration to a breeding area. At Heron Island, females lay multiple clutches over approximately 3 months. To investigate how females mobilise and store lipid during the breeding season we collected plasma, yolk, and fat tissue samples from females at a variety of stages during the nesting season. In breeding females, concentrations of plasma triglyceride increased seasonally. They reached peak concentrations during vitellogenesis and courtship, remained high throughout the nesting season, and then declined to a nadir after the last clutch. Plasma protein concentration increased throughout the breeding season, peaking following the last clutch for the season. Yolk lipids were highest during courtship and were similar throughout the nesting season, suggesting that uptake of lipid by ovarian follicles is completed prior to the beginning of the nesting season. Plasma triglyceride decreases in females with prolonged periods of unsuccessful nesting, and total lipid levels in adipose tissue and follicle yolks were significantly lower in atretic females. It appears that: (1) endogenous energy reserves can be reduced by stochastic environmental events (such as those reducing nesting success), and (2) a metabolic shift signalling the end of the nesting season is characterised by a drop in plasma triglycerides and slight increase in total plasma protein.
Resumo:
Coral bleaching events have become more frequent and widespread, largely due to elevated sea surface temperatures. Global climate change could lead to increased variability of sea surface temperatures, through influences on climate systems, e.g. El Nino Southern Oscillation (ENSO). Field observations in 1999, following a strong ENSO, revealed that corals bleached in winter after unusually cold weather. To explore the basis for these observations, the photosynthetic responses of the coral species Montipora digitata Studer were investigated in a series of temperature and light experiments. Small replicate coral colonies were exposed to ecologically relevant lower temperatures for varying durations and under light regimes that ranged from darkness to full sunlight. Photosynthetic efficiency was analyzed using a pulse amplitude modulated (PAM) fluorometer (F-0, F-m, F-v/F-m), and chlorophyll a (chl a) content and symbiotic dinoflagellate density were analyzed with spectrophotometry and microscopy, respectively. Cold temperature stress had a negative impact on M digitata colonies indicated by decreased photosynthetic efficiency (F-v/F-m), loss of symbiotic dinoflagellates and changes in photosynthetic pigment concentrations. Corals in higher light regimes were more susceptible to cold temperature stress, Moderate cold stress resulted in photoacclimatory responses, but severe cold stress resulted in photodamage, bleaching and increased mortality. Responses to cold temperature stress of M digitata appeared similar to that observed in corals exposed to warmer than normal temperatures, suggesting a common mechanism. The results of this study suggest that corals and coral reefs may also be impacted by exposure to cold as well as warm temperature extremes as climate change occurs.