879 resultados para coke-washing wastewater


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work evaluated the performance of two treatment systems in reducing indicators of biological contamination in swine production wastewater. System I consisted of two upflow anaerobic sludge blanket (UASB) reactors, with 510 and 209 L in volume, being serially arranged. System II consisted of a UASB reactor, anaerobic filter, trickling filter, and decanter, being also organized in series, with volumes of 300, 190, 250, and 150 L, respectively. Hydraulic retention times (HRT) applied in the first UASB reactors were 40, 30, 20, and 11 h in systems I and II. The average removal efficiencies of total and thermotolerant coliforms in system I were 92.92% to 99.50% and 94.29% to 99.56%, respectively, and increased in system II to 99.45% to 99.91% and 99.52% to 99.93%, respectively. Average removal rates of helminth eggs in system I were 96.44% to 99.11%, reaching 100% as in system II. In reactor sludge, the counts of total and thermotolerant coliforms ranged between 10(5) and 10(9) MPN (100 mL)(-1), while helminth eggs ranged from 0.86 to 9.27 eggs g(-1) TS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper was to evaluate the efficiency of the treatment of cassava wastewater, separately from the root washing water, by means of ascending flux anaerobic digesters, with separation of the phases, without temperature control or addition of chemical products and to evaluate its suitability by means of its physical and chemical characteristics for throwing in receiving body, public sewage system or application in fertilization and irrigation. After reactors had been stabilized, essays were conducted varying feeding flow with 8.0, 12.0 and 16.0 Ld-1 corresponding to a hydraulic retention time of 8.17, 5.44 and 4.08 days, respectively. The best reduction for organic load reduction were obtained with hydraulic retention times (HRT) of 8.17 and 5.44 days with mean efficiencies of 89.8 and 90.9%, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development of a procedure, which enables the analysis of nine pharmaceutical drugs in wastewater using gas chromatography-mass spectrometry (GC-MS) associated with solid-phase microextraction (SPME) for the sample preparation. Experimental design was applied to optimize the in situ derivatization and the SPME extraction conditions. Ethyl chloroformate (ECF) was employed as derivatizing agent and polydimethylsiloxane-divinylbenzene (PDMS-DVB) as the SPME fiber coating. A fractional factorial design was used to evaluate the main factors for the in situ derivatization and SPME extraction. Thereafter, a Doehlert matrix design was applied to find out the best experimental conditions. The method presented a linear range from 0.5 to 10 mu g/L, and the intraday and interday precision were lower than 16%. Applicability of the method was verified from real influent and effluent samples of a wastewater treatment plant, as well as from samples of an industry wastewater and a river.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR-laboratory scale- 14L) containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2.L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2.L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explosives industries are a source of toxic discharge. The aim of this study was to compare organisms sensitivity (Daphnia similis, Danio rerio, Escherichia coli and Pseudomonas putida) in detecting acute toxicity in wastewater from two explosives, 2,4,6-TNT (TNT) and nitrocellulose. The samples were collected from an explosives company in the Paraiba Valley, So Paulo, Brazil. The effluents from TNT and nitrocellulose production were very toxic for tested organisms. Statistical tests indicated that D. similis and D. rerio were the most sensitive organisms for toxicity detection in effluents from 2,4,6-TNT and nitrocellulose production. The P. putida bacteria was the organism considered the least sensitive in indicating toxicity in effluents from nitrocellulose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the application of an advanced oxidation process combining hydrogen peroxide with ultraviolet radiation (H2O2/UV) to remove recalcitrant compounds from Kraft bleaching effluent. Anaerobic pre-treatment was performed to remove easily degraded organics using a horizontal-flow anaerobic immobilized biomass (HAIB) reactor. Bleaching plant effluent was treated in the HAIB reactor processed over 19 h of hydraulic retention time (HRT), reaching the expected removal efficiencies for COD (61 +/- 3%), TOC (69 +/- 9%), BOD5 (90 +/- 5%) and AOX (55 +/- 14%). However, the anaerobic treatment did not achieve acceptable removal of UV254 compounds. Furthermore, there was an increase of lignin, measured as total phenols. The H2O2/UV post-treatment provided a wide range of removal efficiencies depending on the dosage of hydrogen peroxide and UV irradiation: COD ranged from 0 to 11%, UV254 from 16 to 35%, lignin from 0 to 29% and AOX from 23 to 54%. All peroxide dosages applied in this work promoted an increase in the BOD5/COD ratio of the wastewater. The experiments demonstrate the technical feasibility of using H2O2/UV for post-treatment of bleaching effluents submitted to anaerobic pre-treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The industrial wastewater from resin production plants contains as major components phenol and formaldehyde, which are traditionally treated by biological methods. As a possible alternative method, electrochemical treatment was tested using solutions containing a mixture of phenol and formaldehyde simulating an industrial effluent. The anode used was a dimensionally stable anode (DSAA (R)) of nominal composition Ti/Ru0.3Ti0.7O2, and the solution composition during the degradation process was analyzed by liquid chromatography and the removal of total organic carbon. From cyclic voltammetry, it is observed that for formaldehyde, a small offset of the beginning of the oxygen evolution reaction occurs, but for phenol, the reaction is inhibited and the current density decreases. From the electrochemical degradations, it was determined that 40 mA cm(-2) is the most efficient current density and the comparison of different supporting electrolytes (Na2SO4, NaNO3, and NaCl) indicated a higher removal of total organic carbon in NaCl medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the manufacture of explosives, large amounts of water are used to remove unwanted by-products generated. This water in turn, ends up in wastewater treatment plants or water bodies. The aim of this study was to evaluate the toxic potential of effluent generated by 2.4.6-Trinitrotoluene (TNT) production, yellow water, red water and mixture of yellow and red water, produced from a plant located in the Paraiba Valley, Sao Paolo state, Brazil. Daphnia similis, Danio rerio, Escherichia coli, Pseudomonas putida and Pseudokircheneriella subcaptata were used as test organisms. Physicochemical parameters such as color, pH, conductivity, total dissolved solids, dissolved oxygen, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were evaluated. Effluent from 2.4.6-TNT production was extremely toxic to all test organisms. The physicochemical parameters evaluated showed high levels of conductivity (from 41.533 to 42.344 mu S /cm) and chemical oxygen demand (COD of 8471 to 27.364 mg/L) for the effluents analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irrigation of citrus (Citrus aurantium L. x Citrus paradise Macf.) with urban reclaimed wastewater (RWW) can be economical and conserve fresh water. However, concerns remain regarding its deleterious effects on soil quality. We investigated the ionic speciation (ISP) of RWW and potential impacts of 11 yr of irrigation with RWW on soil quality, compared with well-water (WW) irrigation. Most of nutrients (similar to 53-99%) in RWW are free ionic species and readily available for plant uptake, such as: NH4+, NO3-, K+, Ca2+, Mg2+, SO42-, H3BO3, Cl-, Fe2+, Mn2+, Zn2+, Co2+, and Ni2+, whereas more than about 80% of Cu, Cr, Pb, and Al are complexed with CO3-, OH-, and/or organic matter. The RWW irrigation increased the availability and total concentrations of nutrients and nonessential elements, and soil salinity and sodicity by two to three times compared with WW-irrigated soils. Although RWW irrigation changed many soil parameters, no difference in citrus yield was observed. The risk of negative impacts from RWW irrigation on soil quality appears to be minimal because of: (i) adequate quality of RWW, according to USEPA limits; (ii) low concentrations of metals in soil after 11 yr of irrigation with RWW; and (iii) rapid leaching of salts in RWW-irrigated soil during the rainy season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to analyze the parasitological risks of treated wastewater reuse from a stabilization pond in the city of Piracicaba, in the State of Sao Paulo (Brazil), and the level of treatment required to protect public health. Samples were taken from raw and treated wastewater in stabilization ponds and submitted to a parasitological, microbiological and physicochemical analysis. The study revealed on treated wastewater the presence of Ascaris sp. and Entamoeba coli with an average density of 1 cysts L-1 and 6 eggs L-1, respectively. For Ascaris, the annual risks of infection due to the accidental ingestion of wastewater irrigation were 7.5 x 10(-2) in 208 days and 8.7 x 10(-2) in 240 days. For Total Coliforms and Escherichia coli in treated wastewater, the average density was 1.0 x 10(5) MPN/100 ml and 2.7 x 10(4) MPN/100 ml respectively, representing 99% and 94% removal efficiency, respectively. For BOD, COD, TS and TSS removal efficiency was 69, 80, 50 and 71%, respectively. The removal efficiency for nitrogen; ammonia nitrogen and total phosphate was 24, 19 and 68%, respectively. The average density of helminths eggs in treated wastewater is higher compared to the density of the limit value of <= 1 egg L-1 and tolerable risk is above the level recommended by the World Health Organization. Multiple barriers are necessary for the reduction of organic matter, chemical contaminants and parasites from treated wastewater. Standards for the sanitary control of treated wastewater to be reused in agricultural irrigation areas should be compiled for developing countries in order to minimize public health risks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of an anaerobic sequencing-batch biofilm reactor (ASBBR- laboratory scale- 14L )containing biomass immobilized on coal was evaluated for the removal of elevated concentrations of sulfate (between 200 and 3,000 mg SO4-2·L-1) from industrial wastewater effluents. The ASBBR was shown to be efficient for removal of organic material (between 90% and 45%) and sulfate (between 95% and 85%). The microbiota adhering to the support medium was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). The ARDRA profiles for the Bacteria and Archaea domains proved to be sensitive for the determination of microbial diversity and were consistent with the physical-chemical monitoring analysis of the reactor. At 3,000 mg SO4-2·L-1, there was a reduction in the microbial diversity of both domains and also in the removal efficiencies of organic material and sulfate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study was developed a natural process using a biological system for the biosynthesis of nanoparticles (NPs) and possible removal of copper from wastewater by dead biomass of the yeast Rhodotorula mucilaginosa. Dead and live biomass of Rhodotorula mucilaginosa was used to analyze the equilibrium and kinetics of copper biosorption by the yeast in function of the initial metal concentration, contact time, pH, temperature, agitation and inoculum volume. Dead biomass exhibited the highest biosorption capacity of copper, 26.2 mg g(-1), which was achieved within 60 min of contact, at pH 5.0, temperature of 30°C, and agitation speed of 150 rpm. The equilibrium data were best described by the Langmuir isotherm and Kinetic analysis indicated a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the yeast were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The shape of the intracellularly synthesized NPs was mainly spherical, with an average size of 10.5 nm. The X-ray photoelectron spectroscopy (XPS) analysis of the copper NPs confirmed the formation of metallic copper. The dead biomass of Rhodotorula mucilaginosa may be considered an efficiently bioprocess, being fast and low-cost to production of copper nanoparticles and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process