973 resultados para coffee leaf scorch
Resumo:
A comparative survey was done in leafhopper populations captured in apricot orchards in two areas of Valencia, one with considerable natural spread of apricot chlorotic leaf roll (ACLR), and the other where such natural spread is virtually nonexistent. An identification of the leafhopper species found in the first and in the second area suggest that Neoaliturus haematoceps and/or Neoaliturus fertestratus are the potential vectors of ACLR, at least under the conditions of Valencia province. Psammotettix striatus and Austroagallia sinuata are potential secondary vextors of ACLR.
Resumo:
In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.
Resumo:
Background: Parallel T-Coffee (PTC) was the first parallel implementation of the T-Coffee multiple sequence alignment tool. It is based on MPI and RMA mechanisms. Its purpose is to reduce the execution time of the large-scale sequence alignments. It can be run on distributed memory clusters allowing users to align data sets consisting of hundreds of proteins within a reasonable time. However, most of the potential users of this tool are not familiar with the use of grids or supercomputers. Results: In this paper we show how PTC can be easily deployed and controlled on a super computer architecture using a web portal developed using Rapid. Rapid is a tool for efficiently generating standardized portlets for a wide range of applications and the approach described here is generic enough to be applied to other applications, or to deploy PTC on different HPC environments. Conclusions: The PTC portal allows users to upload a large number of sequences to be aligned by the parallel version of TC that cannot be aligned by a single machine due to memory and execution time constraints. The web portal provides a user-friendly solution.
Resumo:
This study was carried to develop functions that could explain the growth of Oxalis latifolia, in both early stages and throughout the season, contributing to the improvement of its cultural control. Bulbs of the Cornwall form of O. latifolia were buried at 1 and 8 cm in March 1999 and 2000. Samples were destructive at fixed times, and at each time the corresponding BBCH scale codes as well as the absolute number of growing and adult leaves were noted. Using the absolute number of adult leaves (transformed to percentages), a Gaussian curve of three parameters that explains the growth during the season (R2=0.9355) was developed. The BBCH scale permitted the fit of two regression lines that were accurately adjusted for each burial depth (R2=0.9969 and R2=0.9930 respectively for 1 and 8 cm). The best moment for an early defoliation in Northern Spain could be calculated with these regression lines, and was found to be the second week of May. In addition, it was observed that a burial depth of 8 cm does not affect the growing pattern of the weed, but it affects the number of leaves they produce, which decreases to less than a half of those produced at 1 cm.
Resumo:
In São Francisco Valley, Northeast Brazil, humic substances have been used by growers in fertigated fruit crops, due to its improvements on soil conditions and in plant nutrient uptake, metabolism and growth, reported from different growing places and crops. Nevertheless, little information about plant response to humic substance usage for local soil, weather and cropping system conditions is known. Hence, the metabolic response of guava tree during the orchard establishment to fertigation with humic substances and its correlation to the weather conditions were evaluated in Petrolina, State of Pernambuco. The treatments were manure application in soil combined with mineral fertilizers and humic substances applied through water of irrigation. The results showed that the fertigation treatments and plant age did not present conclusive effects in guava leaf contents of carbohydrates, proteins and amino acids. On the other side, the leaf contents of these compounds were influenced by the weather conditions.
Resumo:
This article introduces a new interface for T-Coffee, a consistency-based multiple sequence alignment program. This interface provides an easy and intuitive access to the most popular functionality of the package. These include the default T-Coffee mode for protein and nucleic acid sequences, the M-Coffee mode that allows combining the output of any other aligners, and template-based modes of T-Coffee that deliver high accuracy alignments while using structural or homology derived templates. These three available template modes are Expresso for the alignment of protein with a known 3D-Structure, R-Coffee to align RNA sequences with conserved secondary structures and PSI-Coffee to accurately align distantly related sequences using homology extension. The new server benefits from recent improvements of the T-Coffee algorithm and can align up to 150 sequences as long as 10 000 residues and is available from both http://www.tcoffee.org and its main mirror http://tcoffee.crg.cat.
Resumo:
Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10-8).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee.
Resumo:
The study evaluated the leaf nutritional levels of peach and nectarine trees under subtropical climate in order to improve the fertilization practices. The experiment was carried out in São Paulo state University, Botucatu, São Paulo State, Brazil. The experimental design consisted of subdivided plots, in which plots corresponded to cultivars and subplots to the leaf sample periods. The evaluated peach cultivars were: Marli, Turmalina, Precocinho, Jubileu, Cascata 968, Cascata 848, CP 951C, CP 9553CYN, and Tropic Beauty, and that of nectarine was 'Sun Blaze'. The sample periods were: after harvest, plants in vegetative period; dormancy; beginning of flowering and fruiting (standard sample). Results indicated significant variations in the levels of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn for the sampling period and in N, Ca, Mg, S, B, Fe and Mn levels for the cultivars.
Resumo:
The survival of micropropagated plants during and after acclimatization is a limiting process to plant establishment. There is little information on how the anatomy of vegetative organs of Ficus carica can be affected by culture conditions and acclimatization. The present research aimed to study the effects of time on culture medium and substrates during the acclimatization of fig tree plantlets produced in vitro, characterizing some leaf anatomy aspects of plantlets cultured in vitro and of fig trees produced in field. Plantlets previously multiplied in vitro were separated and transferred into Wood Plant Medium (WPM) where they were kept for 0, 15, 30, 45 and 60 days. Different substrates were tested and studies on leaf anatomy were performed in order to compare among plantlets grown in vitro, plantlets under 20, 40 and 60 days of acclimatization, and field grown plants. Keeping plantlets for 30 days in WPM allowed better development in Plantmax during acclimatization. Field grown plants presented higher number of stomata, greater epicuticular wax thickness and greater leaf tissue production compared to in vitro ones. The leaf tissues of in vitro plantlets show little differentiation and have great stomata number compared with acclimatized plants, which reduce the number of stomata during the acclimatization process.
Resumo:
Background: Epidemiological studies suggest that coffee consumption reduces the risk of cancer, but the molecular mechanisms of its chemopreventive effects remain unknown. Objective: To identify differentially expressed genes upon incubation of HT29 colon cancer cells with instant caffeinated coffee (ICC) or caffeic acid (CA) using whole genome microarrays. Results: ICC incubation of HT29 cells caused the overexpression of 57 genes and the underexpression of 161, while CA incubation induced the overexpression of 12 genes and the underexpression of 32. Using Venn-Diagrams, we built a list of five overexpressed genes and twelve underexpressed genes in common between the two experimental conditions. This list was used to generate a biological association network in which STAT5B and ATF-2 appeared as highly interconnected nodes. STAT5B overexpression was confirmed at the mRNA and protein levels. For ATF-2, the changes in mRNA levels were confirmed for both ICC and CA, whereas the decrease in protein levels was only observed in CA-treated cells. The levels of cyclin D1, a target gene for both STAT5B and ATF-2, were dowregulated by CA in colon cancer cells and by ICC and CA in breast cancer cells. Conclusions: Coffee polyphenols are able to affect cyclin D1 expression in cancer cells through the modulation of STAT5B and ATF-2.
Resumo:
The epidermis on leaves protects plants from pathogen invasion and provides a waterproof barrier. It consists of a layer of cells that is surrounded by thick cell walls, which are partially impregnated by highly hydrophobic cuticular components. We show that the Arabidopsis T-DNA insertion mutants of REDUCED WALL ACETYLATION 2 (rwa2), previously identified as having reduced O-acetylation of both pectins and hemicelluloses, exhibit pleiotrophic phenotype on the leaf surface. The cuticle layer appeared diffused and was significantly thicker and underneath cell wall layer was interspersed with electron-dense deposits. A large number of trichomes were collapsed and surface permeability of the leaves was enhanced in rwa2 as compared to the wild type. A massive reprogramming of the transcriptome was observed in rwa2 as compared to the wild type, including a coordinated up-regulation of genes involved in responses to abiotic stress, particularly detoxification of reactive oxygen species and defense against microbial pathogens (e.g., lipid transfer proteins, peroxidases). In accordance, peroxidase activities were found to be elevated in rwa2 as compared to the wild type. These results indicate that cell wall acetylation is essential for maintaining the structural integrity of leaf epidermis, and that reduction of cell wall acetylation leads to global stress responses in Arabidopsis.
Resumo:
The cuticle covers the aerial parts of land plants, where it serves many important functions, including water retention. Here, a recessive cuticle mutant, eceriferum-ym (cer-ym), of Hordeum vulgare L. (barley) showed abnormally glossy spikes, sheaths, and leaves. The cer-ym mutant plant detached from its root system was hypersensitive to desiccation treatment compared with wild type plants, and detached leaves of mutant lost 41.8% of their initial weight after 1 h of dehydration under laboratory conditions, while that of the wild type plants lost only 7.1%. Stomata function was not affected by the mutation, but the mutant leaves showed increased cuticular permeability to water, suggesting a defective leaf cuticle, which was confirmed by toluidine blue staining. The mutant leaves showed a substantial reduction in the amounts of the major cutin monomers and a slight increase in the main wax component, suggesting that the enhanced cuticle permeability was a consequence of cutin deficiency. cer-ym was mapped within a 0.8 cM interval between EST marker AK370363 and AK251484, a pericentromeric region on chromosome 4H. The results indicate that the desiccation sensitivity of cer-ym is caused by a defect in leaf cutin, and that cer-ym is located in a chromosome 4H pericentromeric region.
Resumo:
The cuticle is an essential diffusion barrier on aerial surfaces of land plants whose structural component is the polyester cutin. The PERMEABLE CUTICLE1/ABCG32 (PEC1) transporter is involved in plant cuticle formation in Arabidopsis. The gpat6 pec1 and gpat4 gapt8 pec1 double and triple mutants are characterized. Their PEC1-specific contributions to aliphatic cutin composition and cuticle formation during plant development are revealed by gas chromatography/mass spectrometry and Fourier-transform infrared spectroscopy. The composition of cutin changes during rosette leaf expansion in Arabidopsis. C16:0 monomers are in higher abundance in expanding than in fully expanded leaves. The atypical cutin monomer C18:2 dicarboxylic acid is more prominent in fully expanded leaves. Findings point to differences in the regulation of several pathways of cutin precursor synthesis. PEC1 plays an essential role during expansion of the rosette leaf cuticle. The reduction of C16 monomers in the pec1 mutant during leaf expansion is unlikely to cause permeability of the leaf cuticle because the gpat6 mutant with even fewer C16:0 monomers forms a functional rosette leaf cuticle at all stages of development. PEC1/ABCG32 transport activity affects cutin composition and cuticle structure in a specific and non-redundant fashion.
Resumo:
Mabea fistulifera (Euphorbiaceae)is a pioneer plant species with seeds dispersed by the ant Atta sexdens rubropilosa. Since the ants are attracted to the seeds to use its elaiosome as a source of energy, we investigated its composition. The elaiosomes from 13,000 seeds were extracted with a methanol:chloroform mixture (2:1 v/v) and yielded 22% of a residue. This residue was fractionated by column chromatography and its composition determined by infrared spectroscopy and chromatography/mass spectrometry (GC-MS). The elaiosome lipids are constituted mainly by free fatty acids, triacylglycerols and minor quantities of monoacylglycerols or diacylglycerols.