726 resultados para chloroplast omega-3-fatty-acid desaturase
Resumo:
Relatively high amounts of fats or oils (mayor que 40-50 g/kg diet) are frequently used in animal nutrition. Vegetables oils are richer in polyunsaturated fatty acids than animal fats. Most of the works studying the effect of different dietary fat sources are focused either on the existing differences on fat digestibility depending on their fatty acid composition (Wiseman et al., 1991) or on their effect on the carcass fat fatty acid profile (Sanz et al., 1999a). lnformation regarding the effect of dietary fat saturation on fat utilization and deposition it is more limited. lt is generally assumed that, apart from differences in digestion, fatty acids of different composition are equally used for metabolic purposes.
Resumo:
Se han estudiado los biomarcadores, principalmente cetonas y ácidos, preservados en el registro de 3.2 m de la Turbera de Las Conchas. Las cetonas reflejan cierta actividad bacteriana desde 94 cm hasta la base del registro, Los ácidos grasos reflejan una buena preservación de la materia orgánica, salvo en los 20 cm superiores en los que hay indicios de oxidación microbiana de alcanos .The biomarkers, mainly ketones and fally aclds, preserved In 3.2 m deep Las Conchas Mire have been studied, Kelones reflect certain bacterial activity from 94 cm to the bottom of the record. Falty aclds indlcate a good preservation of the organlc matter, wlth the exception of the uppermost 20 cm In whlch mlcroblal oxldation of alkanes are likely to occur
Resumo:
Fatty acid synthesis in chloroplasts is regulated by light. The synthesis of malonyl-CoA, which is catalyzed by acetyl-CoA carboxylase (ACCase) and is the first committed step, is modulated by light/dark. Plants have ACCase in plastids and the cytosol. To determine the possible involvement of a redox cascade in light/dark modulation of ACCase, the effect of DTT, a known reductant of S-S bonds, was examined in vitro for the partially purified ACCase from pea plant. Only the plastidic ACCase was activated by DTT. This enzyme was activated in vitro more efficiently by reduced thioredoxin, which is a transducer of redox potential during illumination, than by DTT alone. Chloroplast thioredoxin-f activated the enzyme more efficiently than thioredoxin-m. The ACCase also was activated by thioredoxin reduced enzymatically with NADPH and NADP-thioredoxin reductase. These findings suggest that the reduction of ACCase is needed for activation of the enzyme, and a redox potential generated by photosynthesis is involved in its activation through thioredoxin as for enzymes of the reductive pentose phosphate cycle. The catalytic activity of ACCase was maximum at pH 8 and 2–5 mM Mg2+, indicating that light-produced changes in stromal pH and Mg2+ concentration modulate ACCase activity. These results suggest that light directly modulates a regulatory site of plastidic prokaryotic form of ACCase via a signal transduction pathway of a redox cascade and indirectly modulates its catalytic activity via stromal pH and Mg2+ concentration. A redox cascade is likely to link between light and fatty acid synthesis, resulting in coordination of fatty acid synthesis with photosynthesis.
Resumo:
Acyl-acyl carrier protein (ACP) desaturases introduce double bonds at specific positions in fatty acids of defined chain lengths and are one of the major determinants of the monounsaturated fatty acid composition of vegetable oils. Mutagenesis studies were conducted to determine the structural basis for the substrate and double bond positional specificities displayed by acyl-ACP desaturases. By replacement of specific amino acid residues in a Δ6-palmitoyl (16:0)-ACP desaturase with their equivalents from a Δ9-stearoyl (18:0)-ACP desaturase, mutant enzymes were identified that have altered fatty acid chain-length specificities or that can insert double bonds into either the Δ6 or Δ9 positions of 16:0- and 18:0-ACP. Most notably, by replacement of five amino acids (A181T/A200F/S205N/L206T/G207A), the Δ6-16:0-ACP desaturase was converted into an enzyme that functions principally as a Δ9-18:0-ACP desaturase. Many of the determinants of fatty acid chain-length specificity in these mutants are found in residues that line the substrate binding channel as revealed by x-ray crystallography of the Δ9-18:0-ACP desaturase. The crystallographic model of the active site is also consistent with the diverged activities associated with naturally occurring variant acyl-ACP desaturases. In addition, on the basis of the active-site model, a Δ9-18:0-ACP desaturase was converted into an enzyme with substrate preference for 16:0-ACP by replacement of two residues (L118F/P179I). These results demonstrate the ability to rationally modify acyl-ACP desaturase activities through site-directed mutagenesis and represent a first step toward the design of acyl-ACP desaturases for the production of novel monounsaturated fatty acids in transgenic oilseed crops.
Resumo:
Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the β-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the β-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.