965 resultados para carboxyl-terminus
Resumo:
Many nuclear hormone receptors are involved in the regulation of skin homeostasis. However, their role in the epithelial compartment of the skin in stress situations, such as skin healing, has not been addressed yet. The healing of a skin wound after an injury involves three major cell types: immune cells, which are recruited to the wound bed; dermal fibroblasts; and epidermal and hair follicle keratinocytes. Our previous studies have revealed important but nonredundant roles of PPARalpha and beta/delta in the reparation of the skin after a mechanical injury in the adult mouse. However, the mesenchymal or epithelial cellular compartment in which PPARalpha and beta/delta play a role could not be determined in the null mice used, which have a germ line PPAR gene invalidation. In the present work, the role of PPARalpha was studied in keratinocytes, using transgenic mice that express a PPARalpha mutant with dominant-negative (dn) activity specifically in keratinocytes. This dn PPARalpha lacks the last 13 C terminus amino acids, binds to a PPARalpha agonist, but is unable to release the nuclear receptor corepressor and to recruit the coactivator p300. When selectively expressed in keratinocytes of transgenic mice, dn PPARalphaDelta13 causes a delay in the healing of skin wounds, accompanied by an exacerbated inflammation. This phenotype, which is similar to that observed in PPARalpha null mice, strongly suggests that during skin healing, PPARalpha is required in keratinocytes rather than in other cell types.
Resumo:
α-dystroglycan is a highly O-glycosylated extracellular matrix receptor that is required for anchoring of the basement membrane to the cell surface and for the entry of Old World arenaviruses into cells. Like-acetylglucosaminyltransferase (LARGE) is a key molecule that binds to the N-terminal domain of α-dystroglycan and attaches ligand-binding moieties to phosphorylated O-mannose on α-dystroglycan. Here we show that the LARGE modification required for laminin- and virus-binding occurs on specific Thr residues located at the extreme N terminus of the mucin-like domain of α-dystroglycan. Deletion and mutation analyses demonstrate that the ligand-binding activity of α-dystroglycan is conferred primarily by LARGE modification at Thr-317 and -319, within the highly conserved first 18 amino acids of the mucin-like domain. The importance of these paired residues in laminin-binding and clustering activity on myoblasts and in arenavirus cell entry is confirmed by mutational analysis with full-length dystroglycan. We further demonstrate that a sequence of five amino acids, Thr(317)ProThr(319)ProVal, contains phosphorylated O-glycosylation and, when modified by LARGE is sufficient for laminin-binding. Because the N-terminal region adjacent to the paired Thr residues is removed during posttranslational maturation of dystroglycan, our results demonstrate that the ligand-binding activity resides at the extreme N terminus of mature α-dystroglycan and is crucial for α-dystroglycan to coordinate the assembly of extracellular matrix proteins and to bind arenaviruses on the cell surface.
Resumo:
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex, composed of viral proteins, replicating RNA and altered cellular membranes. We describe here HCV replicons that allow the direct visualization of functional HCV replication complexes. Viable replicons selected from a library of Tn7-mediated random insertions in the coding sequence of nonstructural protein 5A (NS5A) allowed the identification of two sites near the NS5A C terminus that tolerated insertion of heterologous sequences. Replicons encoding green fluorescent protein (GFP) at these locations were only moderately impaired for HCV RNA replication. Expression of the NS5A-GFP fusion protein could be demonstrated by immunoblot, indicating that the GFP was retained during RNA replication and did not interfere with HCV polyprotein processing. More importantly, expression levels were robust enough to allow direct visualization of the fusion protein by fluorescence microscopy. NS5A-GFP appeared as brightly fluorescing dot-like structures in the cytoplasm. By confocal laser scanning microscopy, NS5A-GFP colocalized with other HCV nonstructural proteins and nascent viral RNA, indicating that the dot-like structures, identified as membranous webs by electron microscopy, represent functional HCV replication complexes. These findings reveal an unexpected flexibility of the C-terminal domain of NS5A and provide tools for studying the formation and turnover of HCV replication complexes in living cells.
Resumo:
The biological properties of wild-type A75/17 and cell culture-adapted Onderstepoort canine distemper virus differ markedly. To learn more about the molecular basis for these differences, we have isolated and sequenced the protein-coding regions of the attachment and fusion proteins of wild-type canine distemper virus strain A75/17. In the attachment protein, a total of 57 amino acid differences were observed between the Onderstepoort strain and strain A75/17, and these were distributed evenly over the entire protein. Interestingly, the attachment protein of strain A75/17 contained an extension of three amino acids at the C terminus. Expression studies showed that the attachment protein of strain A75/17 had a higher apparent molecular mass than the attachment protein of the Onderstepoort strain, in both the presence and absence of tunicamycin. In the fusion protein, 60 amino acid differences were observed between the two strains, of which 44 were clustered in the much smaller F2 portion of the molecule. Significantly, the AUG that has been proposed as a translation initiation codon in the Onderstepoort strain is an AUA codon in strain A75/17. Detailed mutation analyses showed that both the first and second AUGs of strain A75/17 are the major translation initiation sites of the fusion protein. Similar analyses demonstrated that, also in the Onderstepoort strain, the first two AUGs are the translation initiation codons which contribute most to the generation of precursor molecules yielding the mature form of the fusion protein.
Resumo:
We have analyzed the presentation of human histocompatability leukocyte antigen-A*0201-associated tumor peptide antigen MAGE-3271-279 by melanoma cells. We show that specific cytotoxic T lymphocyte (CTL)-recognizing cells transfected with a minigene encoding the preprocessed fragment MAGE-3271-279 failed to recognize cells expressing the full length MAGE-3 protein. Digestion of synthetic peptides extended at the NH2 or COOH terminus of MAGE-3271-279 with purified human proteasome revealed that the generation of the COOH terminus of the antigenic peptide was impaired. Surprisingly, addition of lactacystin to purified proteasome, though partially inhibitory, resulted in the generation of the antigenic peptide. Furthermore, treatment of melanoma cells expressing the MAGE-3 protein with lactacystin resulted in efficient lysis by MAGE-3271-279-specific CTL. We therefore postulate that the generation of antigenic peptides by the proteasome in cells can be modulated by the selective inhibition of certain of its enzymaticactivities.
Resumo:
Après avoir situé le contexte de la recherche et défini les enjeux principaux du travail, différents types de nanoparticules, ainsi que leurs principales caractéristiques, sont parcourues. L'élaboration de critères de sélection ayant permis de déterminer les types de nanoparticules potentiellement adaptés à !a détection de traces papillaires, l'étude s'est alors focalisée sur deux familles de composés: les quantum dots et les nanoparticules d'oxyde de silicium. Deux types de quantum dots ont été synthétisés : le tellurure de cadmium et le sulfure de zinc). Ils n'ont toutefois pas permis la détection de traces papillaires réalistes. En effet, seules des traces fraîches et enrichies en sécrétions ont pu être mises en évidence. Toutefois, des résultats ont été obtenus avec les deux types de quantum dots pour la détection de traces papillaires sanglantes. Après optimisation, les techniques rivalisent avec les méthodes couramment appliquées en routine. Cependant, l'interaction se produisant entre les traces et les nanoparticules n'a pas pu être déterminé. Les nanoparticules d'oxyde de silicium ont dès lors été appliquées dans le but de comprendre plus en détails les interactions avec les traces papillaires. Ces nanoparticules ont l'avantage d'offrir un très bon contrôle de surface, permettant ainsi une étude détaillée des phénomènes en jeu. Des propriétés de surface variables ont dès lors été obtenues en greffant diverses molécules à la surface des nanoparticules d'oxyde de silicium. Après avoir exploré différentes hypothèses d'interaction, il a pu être déterminé qu'une réaction chimique se produit lors qu'un groupement de type carboxyle est présent à la surface des particules. Ce groupement réagit avec les fonctions amines primaires des sécrétions. L'interaction chimique a ensuite pu être renforcée par l'utilisation d'un catalyseur, permettant d'accélérer la réaction. Dans la dernière partie du travail, les nanoparticules d'oxyde de silicium ont été comparées à une technique utilisée en routine, la fumigation de cyanoacrylate. Bien que des études plus approfondies soient nécessaires, il s'avère que l'application de nanoparticules d'oxyde de silicium permet une détection de très bonne qualité, moins dépendante du donneur que les techniques courantes. Ces résultats sont prometteurs en vue du développement d'une technique possédant une sensibilité et une sélectivité accrue. - Having situated the background of research and identified key issues of work, different types of nanoparticles and their main features are reviewed. The development of selection criteria lead to the identification of nanoparticles types potentially suitable for fingermarks detection. The study focused then On two families of compounds: quantum dots and silicon oxide nanoparticles. Two types of quantum dots were synthesized and characterised: cadmium telluride and zinc sulphide. Unfortunally, they did not allow the detection realistic fingermarks. Indeed, only fresh and groomed fingermarks have been detected. However, results have been obtained with both types of quantum dots for the detection of fingermarks in blood. After optimization procedures, the quantum dots based teshniques compete with the methods currently used in routine. However, the interaction occurring between fingermarks and nanoparticles could not be determined. Silicon oxide nanoparticles have therefore been applied in order to understand in detail the interactions With fingermarks. These nanoparticles have the advantage of providing a very good surface control, allowing am in-depth study of the phenomena involved. Versatile surface properties were therefore obtained by grafting various molecules on the surface of silicon oxide nanoparticles. Different hypotheses were investigated and it was determined that a chemical reaction occurred between the surface functionalised nanoparticles and the fingermark residues. The carboxyl groups on the surface of the particles react with primary amines of the secretions. Therefore, this interaction was improved by the use of a catalyst. In the last part of the work, silicon oxide nanoparticles were compared to a routinely used technique: cyanocrylate fuming. Although further studies are still needed, it appears that the application of silicon oxide nanoparticles allows fingermark detection of very good quality, with a lowered donor dependency. These results are promising for the development of techniques with greater sensitivity and selectivity.
Resumo:
This report presents systematic empirical annotation of transcript products from 399 annotated protein-coding loci across the 1% of the human genome targeted by the Encyclopedia of DNA elements (ENCODE) pilot project using a combination of 5' rapid amplification of cDNA ends (RACE) and high-density resolution tiling arrays. We identified previously unannotated and often tissue- or cell-line-specific transcribed fragments (RACEfrags), both 5' distal to the annotated 5' terminus and internal to the annotated gene bounds for the vast majority (81.5%) of the tested genes. Half of the distal RACEfrags span large segments of genomic sequences away from the main portion of the coding transcript and often overlap with the upstream-annotated gene(s). Notably, at least 20% of the resultant novel transcripts have changes in their open reading frames (ORFs), most of them fusing ORFs of adjacent transcripts. A significant fraction of distal RACEfrags show expression levels comparable to those of known exons of the same locus, suggesting that they are not part of very minority splice forms. These results have significant implications concerning (1) our current understanding of the architecture of protein-coding genes; (2) our views on locations of regulatory regions in the genome; and (3) the interpretation of sequence polymorphisms mapping to regions hitherto considered to be "noncoding," ultimately relating to the identification of disease-related sequence alterations.
Resumo:
Objectives: Sequencing and annotation of the genome of Aspergillus fumigatus has dramatically changed our knowledge about the proteins potentially encoded by the fungus. Own analysis have resulted in at least 47 of them contain a signal for secretion. Among those list we want to characterize those enzymes that may have impact on fungal growth outside and particularly inside the host. We thereby want to learn more about their function in general and to identify possible novel drug targets suited to combat invasive aspergillosis. Methods: Four groups of secreted proteases have been chosen for further analysis: 1 Serine-carboxyl proteases (sedolisins). Four of them were expressed in yeast and partly in bacteria. Substrate-specificity studies and kinetics as well as protein characterization of the yeast derived proteases were performed according to standard methods. Enzyme specific polyclonal antibodies were raised in rabbits using the peptides expressed in bacteria. Expression of proteases in A. fumigatus was investigated with these antibodies and gene knockout mutants for each enzyme as a control. All the following mentioned proteases will be investigated accordingly. 2 Two metalloproteases from the M12-family, ADAM-A and ADAM-B. Both proteases are likely membrane associated and may have inherent sheddase function as their counterparts in mammals. 3 One metalloprotease of the M43 family. An orthologue of this protease in Coccidioides posadasii is known to posses immunomodulating activities. 4 One putative endoprotease of the S28-family. An orthologue in Aspergillus niger is known to digest proline-rich proteins. In A. fumigatus this enzyme may facilitate invasion through proline-rich proteins like collagen. Results: All sedolisins expressed in yeast were proteolytically active: Three of them were characterized as tripeptidyl-peptidases whereas one enzyme is an endoprotease. Corresponding knockout mutants did not reveal a specific phenotype. Expression and investigations on all above mentioned proteases as well as generation of corresponding knockout mutants and double knockout mutants for the ADAMs, respectively, is underway. Promising candidates will be investigated in animal studies for reduced virulence. Conclusions : The real existence of so far hypothetical proteases predicted by the genome project was already demonstrated for the sedolisins by a reverse genetic approach (from gene to protein). With the aim of improving basic knowledge on function of other proteases potentially crucial for fungal growth and thus for pathogenesis, other hypothetical enzymes will be investigated. Those enzymes may turn out to be ideal drug targets for antimycotic chemotherapy.
Promoter recognition and activation by the global response regulator CbrB in Pseudomonas aeruginosa.
Resumo:
In Pseudomonas aeruginosa, the CbrA/CbrB two-component system is instrumental in the maintenance of the carbon-nitrogen balance and for growth on carbon sources that are energetically less favorable than the preferred dicarboxylate substrates. The CbrA/CbrB system drives the expression of the small RNA CrcZ, which antagonizes the repressing effects of the catabolite repression control protein Crc, an RNA-binding protein. Dicarboxylates appear to cause carbon catabolite repression by inhibiting the activity of the CbrA/CbrB system, resulting in reduced crcZ expression. Here we have identified a conserved palindromic nucleotide sequence that is present in upstream activating sequences (UASs) of promoters under positive control by CbrB and σ(54) RNA polymerase, especially in the UAS of the crcZ promoter. Evidence for recognition of this palindromic sequence by CbrB was obtained in vivo from mutational analysis of the crcZ promoter and in vitro from electrophoretic mobility shift assays using crcZ promoter fragments and purified CbrB protein truncated at the N terminus. Integration host factor (IHF) was required for crcZ expression. CbrB also activated the lipA (lipase) promoter, albeit less effectively, apparently by interacting with a similar but less conserved palindromic sequence in the UAS of lipA. As expected, succinate caused CbrB-dependent catabolite repression of the lipA promoter. Based on these results and previously published data, a consensus CbrB recognition sequence is proposed. This sequence has similarity to the consensus NtrC recognition sequence, which is relevant for nitrogen control.
Resumo:
Only few infectious mouse mammary tumor viruses (MMTV) have been characterized which induce a potent superantigen response in vivo. Here we describe the characterization of an MMTV which was isolated from milk of the highly mammary tumor-prone SHN mouse strain. Exposure of newborn mice to milk-borne MMTV (SHN) results in a very slow deletion of V beta 7, 8.1, 8.2 and 8.3 expressing peripheral T cells. Subcutaneous injection of adult mice with this virus induces a rapid and strong stimulation of all four affected V beta-subsets in vivo. Besides the strong T cell effect we observed an early proliferation and activation of the local B cell pool leading to the initial secretion of IgM followed by preferential secretion of IgG2a by day 6. Sequence comparison of the polymorphic C terminus with known open reading frames revealed high homology to the endogenous provirus Mtv-RCS. This is the first report of a virus having a complete overlap in V beta-specificity with a bacterial superantigen stimulating as many as 35% of the whole CD4+ T cell repertoire including V beta 8.2.
Resumo:
Plasmodium sporozoites make a remarkable journey from the mosquito midgut to the mammalian liver. The sporozoite's major surface protein, circumsporozoite protein (CSP), is a multifunctional protein required for sporozoite development and likely mediates several steps of this journey. In this study, we show that CSP has two conformational states, an adhesive conformation in which the C-terminal cell-adhesive domain is exposed and a nonadhesive conformation in which the N terminus masks this domain. We demonstrate that the cell-adhesive domain functions in sporozoite development and hepatocyte invasion. Between these two events, the sporozoite must travel from the mosquito midgut to the mammalian liver, and N-terminal masking of the cell-adhesive domain maintains the sporozoite in a migratory state. In the mammalian host, proteolytic cleavage of CSP regulates the switch to an adhesive conformation, and the highly conserved region I plays a critical role in this process. If the CSP domain architecture is altered such that the cell-adhesive domain is constitutively exposed, the majority of sporozoites do not reach their target organs, and in the mammalian host, they initiate a blood stage infection directly from the inoculation site. These data provide structure-function information relevant to malaria vaccine development.
Resumo:
Liddle syndrome is an autosomal dominant form of hypertension resulting from deletion or missense mutations of a PPPxY motif in the cytoplasmic COOH terminus of either the beta or gamma subunit of the epithelial Na channel (ENaC). These mutations lead to increased channel activity. In this study we show that wild-type ENaC is downregulated by intracellular Na+, and that Liddle mutants decrease the channel sensitivity to inhibition by intracellular Na+. This event results at high intracellular Na+ activity in 1.2-2.4-fold higher cell surface expression, and 2.8-3.5-fold higher average current per channel in Liddle mutants compared with the wild type. In addition, we show that a rapid increase in the intracellular Na+ activity induced downregulation of the activity of wild-type ENaC, but not Liddle mutants, on a time scale of minutes, which was directly correlated to the magnitude of the Na+ influx into the oocytes. Feedback inhibition of ENaC by intracellular Na+ likely represents an important cellular mechanism for controlling Na+ reabsorption in the distal nephron that has important implications for the pathogenesis of hypertension.
Resumo:
PURPOSE: Recently, the authors identified a gene, BIGH3, in which different mutations cause a group of hereditary corneal dystrophies: lattice type I and IIIA (CDLI and CDLIIIA), granular Groenouw type I (CDGGI), Avellino (CDA), and Reis-Bücklers' (CDRB). All these disorders are characterized by the progressive accumulation of corneal deposits with different structural organization. Experiments were conducted to determine the role of kerato-epithelin (KE), the product of BIGH3, in the pathogenesis of the diseases. METHODS: KE-15 and KE-2, two rabbit antisera raised against peptides from the 69-364 and 426 - 682 amino acid regions of KE respectively, were used for immunohistology of the corneas obtained after keratoplasty in six CDLI patients, three CDGGI patients, and one CDA patient. RESULTS: The nonamyloid deposits observed in CDGGI stained intensively with KE-15 and KE-2, whereas the amyloid deposits in all analyzed CDLI corneas reacted to KE-2 but not to KE-15. In the CDA cornea, where amyloid and nonamyloid inclusions were present, positive staining with both antisera was observed. CONCLUSIONS: Pathologic amyloid and nonamyloid deposits observed in CDLI, CDGGI-, and CDA-affected corneas are caused by KE accumulation. Different staining patterns of amyloid and nonamyloid deposits observed with antibodies against the amino and carboxyl termini of KE suggest that two mechanisms of KE misfolding are implicated in the pathogenesis of 5q31-linked corneal dystrophies.
Resumo:
The Federal Highway Administration (FHWA) and the Iowa and Illinois Departments of Transportation (Iowa DOT and IDOT) have identified the Selected Alternative for improving Interstate 74 (I-74) from its southern terminus at Avenue of the Cities (23rd Avenue) in Moline, Illinois to its northern terminus one mile north of the I-74 interchange with 53rd Street in Davenport, Iowa. The Selected Alternative identified and discussed in this Record of Decision is the preferred alternative identified in the Final Environmental Impact Statement (FEIS). The purpose of the proposed improvements is to improve capacity, travel reliability, and safety along I-74 between its termini, and provide consistency with local land use planning goals. The need for the proposed improvements to the I-74 corridor is based on a combination of factors related to providing better transportation service and sustaining economic development.
Resumo:
tabby and downless mutant mice have apparently identical defects in teeth, hair and sweat glands. Recently, genes responsible for these spontaneous mutations have been identified. downless (Dl) encodes Edar, a novel member of the tumour necrosis factor (TNF) receptor family, containing the characteristic extracellular cysteine rich fold, a single transmembrane region and a death homology domain close to the C terminus. tabby (Ta) encodes ectodysplasin-A (Eda) a type II membrane protein of the TNF ligand family containing an internal collagen-like domain. As predicted by the similarity in adult mutant phenotype and the structure of the proteins, we demonstrate that Eda and Edar specifically interact in vitro. We have compared the expression pattern of Dl and Ta in mouse development, taking the tooth as our model system, and find that they are not expressed in adjacent cells as would have been expected. Teeth develop by a well recorded series of epithelial-mesenchymal interactions, similar to those in hair follicle and sweat gland development, the structures found to be defective in tabby and downless mice. We have analysed the downless mutant teeth in detail, and have traced the defect in cusp morphology back to initial defects in the structure of the tooth enamel knot at E13. Significantly, the defect is distinct from that of the tabby mutant. In the tabby mutant, there is a recognisable but small enamel knot, whereas in the downless mutant the knot is absent, but enamel knot cells are organised into a different shape, the enamel rope, showing altered expression of signalling factors (Shh, Fgf4, Bmp4 and Wnt10b). By adding a soluble form of Edar to tooth germs, we were able to mimic the tabby enamel knot phenotype, demonstrating the involvement of endogenous Eda in tooth development. We could not, however, reproduce the downless phenotype, suggesting the existence of yet another ligand or receptor, or of ligand-independent activation mechanisms for Edar. Changes in the structure of the enamel knot signalling centre in downless tooth germs provide functional data directly linking the enamel knot with tooth cusp morphogenesis. We also show that the Lef1 pathway, thought to be involved in these mutants, functions independently in a parallel pathway.