986 resultados para canine experimental infection
Resumo:
Neospora caninum is a protozoan parasite known as an important cause of bovine abortion worldwide. Little is currently known about how different strains of N. caninum vary in their pathogenicity. In this study, we compared a Brazilian strain, Nc-Bahia, with the first isolate of this coccidian, Nc-1. Eight cows and seven buffaloes were submitted to fixed-time artificial insemination protocols for a better control of pregnancy. Group 1 was inoculated with Nc-Bahia (n=8; five cows and three buffaloes), and Group 2 was inoculated with Nc-1 (n=5; two cows and three buffaloes). One nonpregnant female of each species was left uninfected as sentinel controls for potential environmental infection. All inoculated animals received 5×108 tachyzoites of N. caninum, by intravenous route, on the 70th day of gestation. Uninfected animals remained seronegative throughout the experiment, indicating no exogenous infection, whereas all inoculated animals became seropositive to N. caninum. In Group 1, abortion was found in only one cow on 42 days postinfection (dpi; frequency of abortion=12.5 %), whilst all animals from Group 2 aborted on 35 dpi (frequency of abortion= 100 %). Parasite DNA was detected by seminested PCR in maternal, foetal and placental tissues, confirming vertical transmission in Groups 1 and 2, although histological lesions had different frequencies and degrees of severity between the groups. There was evidence of lower pathogenicity of Nc- Bahia compared to Nc-1 when used in experimental infection, as it caused fewer abortions, as well as less frequent and milder histological lesions. This was the first time Nc-Bahia has been used for experimental infection.
Resumo:
Parapoxvirus (PPV) are member of a genus in the family poxviridae which currently encompasses four species: the prototype orf virus (OV), bovine papular stomatitis virus (BPSV), pseudocowpox virus (PCPV) and parapoxvirus of New Zealand red deer (PVNZ). PPVs cause widespread, but localized diseases of small and large ruminants and they can also be transmitted to man. Knowledge of the molecular biology of PPV is still limited as compared to orthopoxviruses, especially vaccinia virus (VACV). The PPV genome displays a high G+C content and relatively small size for poxvirus. Coventional electron microscopy displays PPV virions with ovoid shape and slightly smaller in size than the brickshaped orthopoxviruses. The most striking feature, which readily enables identification of PPV, is a tubule-like structure that surrounds the particle in a spiral fashion. PPV genome organization and content is very similar to that of other poxviruses, the central region contain 88 genes which are present in all poxviruse, in contrast the terminal regions are variable and contain a set of genes unique to the genus PPV. Genes in the near-terminal regions of the genome are frequently not essential for growth in cultured cells encoding factors with important roles in virushost interactions including modulating host immune responses and determining host range. Recently it was suggested that the open reading frames (ORFs) 109 and 110 of the OV genome have a major role in determining species specificity during natural infection in sheep and goats. This hypothesis is based on the analysis of a few number of sequences of different sheep and goats viral isolates. PPV replicate into the cytoplasm of infected cells and produce three structurally different infectious particles: the intracellular mature virions (IMV), intracellular enveloped virions (IEV) and the extracellular enveloped virions (EEV). The vaccinia A33R and A34R hotologue proteins encoded by the ORFS 109 and 110 are expressed in the envelope of the IEV and EEV. The F1L immunodominant protein of orf virus is the major component of the surface tubule structure of the IMV and can post-translationaly insert into membranes via Cterminal, hydrofobic anchor sequence like its orthologue VACV H3L protein. Moreover the F1L protein binds to glycosaminoglycans on the cell surface and has an important role in IMV adsorption to mammalian cells. In this study we investigated the morphogenesis of the PPV through the construction of a mutant virus deleted of the F1L protein. A study of the deleted virus life cycle was conducted in different type of cells and its morphology was observed with electron microscopy. It was demonstared that F1L protein have important role in morphogenesis and infectivity. Moreover it is essential to determine the spiral fashion of the tubule like structure of the virion surface. Some pathogenetic aspects of the PPV infection were studied, in particular the protein implicated in the host range were analysed in detail. An experimental infection with OV and PCPV was conducted in goats and sheep. After infection, the severity of the lesions were comparable in both the animal species. The OV did not result in severe disease neither in sheep nor in goats, suggesting that host factors, rather than virus strain characteristics, may play an important role in the pathogenesis of the Parapoxvirus infections. The PCPV failed to produce any lesion in both sheep and goats, ruling out the possibility of any recombination between PCPV and OV during natural infection in these animal species. The phylogenetic analysis of the ORFs 109 and 110 from several goats and sheep viral isolates showed a clustering based on the antigenic content of the protein that was independent from species and geographic origin.
Resumo:
Larval infection with Echinococcus multilocularis starts with the intrahepatic postoncospheral development of a metacestode that-at its mature stage-consists of an inner germinal and an outer laminated layer (GL ; LL). In certain cases, an appropriate host immune response may inhibit parasite proliferation. Several lines of evidence obtained in vivo and in vitro indicate the important bio-protective role of the LL. For instance, the LL has been proposed to protect the GL from nitric oxide produced by periparasitic macrophages and dendritic cells, and also to prevent immune recognition by surrounding T cells. On the other hand, the high periparasitic NO production by peritoneal exsudate cells contributes to periparasitic immunosuppression, explaining why iNOS deficienct mice exhibit a significantly lower susceptibility towards experimental infection. The intense periparasitic granulomatous infiltration indicates a strong host-parasite interaction, and the involvement of cellular immunity in control of the metacestode growth kinetics is strongly suggested by experiments carried out in T cell deficient mouse strains. Carbohydrate components of the LL, such as Em2(G11) and Em492, as well as other parasite metabolites yield immunomodulatory effects that allow the parasite to survive in the host. I.e., the IgG response to the Em2(G11)-antigen takes place independently of alpha-beta+CD4+T cells, and in the absence of interactions between CD40 and CD40 ligand. Such parasite molecules also interfere with antigen presentation and cell activation, leading to a mixed Th1/Th2-type response at the later stage of infection. Furthermore, Em492 and other (not yet published) purified parasite metabolites suppress ConA and antigen-stimulated splenocyte proliferation. Infected mouse macrophages (AE-MØ) as antigen presenting cells (APC) exhibited a reduced ability to present a conventional antigen (chicken ovalbumin, C-Ova) to specific responder lymph node T cells when compared to normal MØ. As AE-MØ fully maintain their capacity to appropriately process antigens, a failure in T cell receptor occupancy by antigen-Ia complex or/and altered co-stimulatory signals can be excluded. Studying the status of accessory molecules implicated in T cell stimulation by MØ, it could be shown that B7-1 (CD80) and B7-2 (CD86) remained unchanged, whereas CD40 was down-regulated and CD54 (=ICAM-1) slightly up-regulated. FACS analysis of peritoneal cells revealed a decrease in the percentage of CD4+ and CD8+T cells in AE-infected mice. Taken together the obstructed presenting-activity of AE-MØ appeared to trigger an unresponsiveness of T cells leading to the suppression of their clonal expansion during the chronic phase of AE infection. Interesting information on the parasite survival strategy and potential can be obtained upon in vitro and in vivo treatment. Hence, we provided very innovative results by showing that nitazoxanide, and now also, respectively, new modified compounds may represent a useful alternative to albendazole. In the context of chemotherapeutical repression of parasite growth, we searched also for parasite molecules, whose expression levels correlate with the viability and growth activity of E. multilocularis metacestode. Expression levels of 14-3-3 and II/3-10, relatively quantified by realtime reverse transcription-PCR using a housekeeping gene beta-actin, were studied in permissive nu/nu and in low-permissive wild type BALB/c mice. At 2 months p.i., the transcription level of 14-3-3 was significantly higher in parasites actively proliferating in nu/nu mice compared to parasites moderately growing in wild type mice. Immunoblotting experiments confirmed at the protein level that 14-3-3 was over-expressed in parasites derived from nu/nu mice at 2 months p.i. In vitro-treatment of E. multilocularis with an anti-echinococcal drug nitazoxanide for a period of 8 days resulted in a significant decrease of both 14-3-3 and II/3-10 transcription levels,
Resumo:
The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving and diversifying pathogen necessitating the development of improved vaccines. Immunity to PRRSV is not well understood although there are data suggesting that virus-specific T cell IFN-γ responses play an important role. We therefore aimed to better characterise the T cell response to genotype 1 (European) PRRSV by utilising a synthetic peptide library spanning the entire proteome and a small cohort of pigs rendered immune to PRRSV-1 Olot/91 by repeated experimental infection. Using an IFN-γ ELISpot assay as a read-out, we were able to identify 9 antigenic regions on 5 of the viral proteins and determine the corresponding responder T cell phenotype. The diversity of the IFN-γ response to PRRSV proteins suggests that antigenic regions are scattered throughout the proteome and no one single antigen dominates the T cell response. To address the identification of well-conserved T cell antigens, we subsequently screened groups of pigs infected with a closely related avirulent PRRSV-1 strain (Lelystad) and a divergent virulent subtype 3 strain (SU1-Bel). Whilst T cell responses from both groups were observed against many of the antigens identified in the first study, animals infected with the SU1-Bel strain showed the greatest response against peptides representing the non-structural protein 5. The proteome-wide peptide library screening method used here, as well as the antigens identified, warrant further evaluation in the context of next generation vaccine development.
Resumo:
Bacille Calmette-Guérin (BCG) is a live, attenuated strain of Mycobacterium bovis used widely for tuberculosis prophylaxis and bladder cancer immunotherapy, although it has limitations in both contexts. To investigate whether BCG's immunostimulatory properties could be modified, and to gain insight into the interaction between mycobacteria and their hosts, we constructed recombinant BCG strains that secrete functional murine cytokines and studied their properties in mouse models of experimental infection. Cell-mediated immune responses to mycobacterial antigen (purified protein derivative) were assayed using splenocytes from mice inoculated with various BCG recombinants. Antigen-specific proliferation and cytokine release were found to be substantially greater with splenocytes derived from mice injected with cytokine-secreting BCG than with splenocytes from mice injected with BCG lacking cytokines. The most profound effects were induced by BCG secreting interleukin 2, interferon gamma, or granulocyte-macrophage colony-stimulating factor. Thus, cytokine-secreting BCG can enhance immune responses to mycobacterial antigens and may be improved reagents for tuberculosis prophylaxis and cancer immunotherapy.
Resumo:
Introdução: A leishmaniose visceral (LV) é um importante problema de saúde pública no Brasil, com cerca 3000 mil casos notificados anualmente. Nos últimos anos, a LV tem ampliado sua distribuição em vários estados do país, associada principalmente aos processos socioambientais, antrópicos e migratórios. A LV é causada pela infecção com Leishmania infantum chagasi, transmitida, principalmente, por Lutzomyia longipalpis (Diptera: Psychodidae). Este flebotomíneo apresenta ampla distribuição nas Américas, todavia, evidências sugerem que se constitui em um complexo de espécies crípticas. A dinâmica de transmissão da LV é modulada por fatores ecológicos locais que influenciam a interação entre populações do patógeno, do vetor e dos hospedeiros vertebrados. Portanto, o estudo das variáveis associadas a esta interação pode contribuir para elucidar aspectos dos elos epidemiológicos e contribuir para a tomada de decisões em saúde pública. Objetivo: Avaliar parâmetros relacionados à capacidade vetorial da população de Lu. longipalpis presente em área urbana do município de Panorama, estado de São Paulo. Métodos: Foram realizadas capturas mensais durante 48 meses para avaliar a distribuição espaço-temporal de Lu. longipalpis e investigar a circulação de Le. i. chagasi. Também foram realizados os seguintes experimentos com o vetor: captura-marcação-soltura-recaptura para estimar a sobrevida da população e a duração do seu ciclo gonotrófico, a atratividade dos hospedeiros mais frequentes em áreas urbanas, a proporção de repasto em cão, infecção experimental e competência vetorial. Resultados: Observou-se que no município de Panorama, Lu. longipalpis apresentou as frequências mais elevadas na estação chuvosa (entre outubro e março), maior densidade em áreas com presença de vegetação e criação de animais domésticos, locais aonde também foi demonstrada a circulação natural de espécimes de Lu. longipalpis infectados com Le. i. chagasi. Além disto, foi corroborado que a população de Lu. longipalpis apresentou hábito hematofágico eclético, altas taxas de sobrevivência e que foi competente para transmitir o agente da LV. Nos experimentos de laboratório foi evidenciada a heterogeneidade na infecção de fêmeas de Lu. longipalpis desafiadas a se alimentarem em cães comprovadamente infectados por L. i. chagasi e o rápido desenvolvimento do parasita neste vetor natural. Conclusões. As observações do presente estudo corroboram a capacidade vetora de Lu. longipalpis para transmitir a Le. i. chagasi e ressaltam a importância da espécie na transmissão do agente etiológico da LV. Ações de manejo ambiental, educação e promoção à saúde são recomendadas às autoridades municipais para diminuir o risco potencial de infecção na população humana e canina, considerando-se o elevado potencial vetor de Lu. longipalpis e a presença de condições que favorecem a interação dos componentes da tríade epidemiológica da LV.
Resumo:
The intestinal spirochaete Brachyspira pilosicoli causes colitis in a wide variety of host species. Little is known about the structure or protein constituents of the B. pilosicoli outer membrane (OM). To identify surface-exposed proteins in this species, membrane vesicles were isolated from B. pilosicoli strain 95-1000 cells by osmotic lysis in dH(2)O followed by isopycnic centrifugation in sucrose density gradients. The membrane vesicles were separated into a high-density fraction (HDMV; p = 1.18 g CM-3) and a low-density fraction (LDMV; rho=1.12 g cm(-3)). Both fractions were free of flagella and soluble protein contamination. LDMV contained predominantly OM markers (lipo-oligosaccharide and a 29 kDa B. pilosicoli OM protein) and was used as a source of antigens to produce mAbs. Five B. pilosicoli-specific mAbs reacting with proteins with molecular masses of 23, 24, 35, 61 and 79 kDa were characterized. The 23 kDa protein was only partially soluble in Triton X-114, whereas the 24 and 35 kDa proteins were enriched in the detergent phase, implying that they were integral membrane proteins or lipoproteins. All three proteins were localized to the B. pilosicoli OM by immunogold labelling using specific mAbs. The gene encoding the abundant, surface-exposed 23 kDa protein was identified by screening a B. pilosicoli 95-1000 genome library with the mAb and was expressed in Escherichia coli. Sequence analysis showed that it encoded a unique lipoprotein, designated BmpC. Recombinant BmpC partitioned predominantly in the OM fraction of E. coli strain SOLR. The mAb to BmpC was used to screen a collection of 13 genetically heterogeneous strains of B. pilosicoli isolated from five different host species. Interestingly, only strain 95-1000 was reactive with the mAb, indicating that either the surface-exposed epitope on BmpC is variable between strains or that the protein is restricted in its distribution within B. pilosicoli.
Resumo:
Although diarrhoea caused by Cryptosporidium is prevalent in livestock species throughout the world relatively little is known about the species and subtypes of Cryptosporidium found in cattle on Scottish farms. In particular, little is known about the shedding profiles (age when calves become infected and duration of shedding) of the different species found in cattle and how calves become infected. There are several theories about how neonatal calves first become infected with the parasite but the role which adult cattle play in the transmission of the parasite has not been fully addressed. It was previously thought that adult cattle did not become infected with the same species of Cryptosporidium which causes disease in the young calves. Some studies have shown that this may not be true and with the advance of new techniques to discriminate species this is an area which should be revisited. In addition, it is known that it is possible for humans to become infected with Cryptosporidium and show clinical disease early in life and then again later in adulthood. In livestock however, diarrhoea caused by the parasite is generally only seen in neonatal livestock while older animals tend to be asymptomatic. It is not known if this resistance to clinical disease at an older age is due to changes in the host with an increase in age or if prior infection “immunises” the animal and provides protection against re-infection. It is also not known if infection with one isolate of C. parvum will provide protection against infection with another or if the protection formed is species/isolate specific. The main aims of this thesis were to: determine the species and subtypes of Cryptosporidium found in calves on a study farm over a one year period from birth; assess the role which adult cattle play in the transmission of the parasite to newborn calves; develop new typing tools to enable the rapid and easy differentiation of Cryptosporidium species found in cattle and to examine the host-pathogen interactions in animals given serial experimental challenges with distinct Cryptosporidium parvum isolates to determine if the resistance seen in older animals on farms is due to an increase in age or as a result of prior infection. iii A variety of different approaches were taken to achieve these aims. Longitudinal experiments carried out on a study farm revealed that in calves <9 weeks of age the most common species of Cryptosporidium is C. parvum and that all calves in the group became infected with Cryptosporidium within the first two weeks of life. Sample collection from the same animals later in life (at 6 months of age) showed that contrary to most previous studies the most common species detected at in this age group was also C. parvum although, interestingly, the subtype which the calves were shedding was not the same subtype that they were shedding previously. The longitudinal study which investigated the role of adult cattle in the transmission of Cryptosporidium also yielded some interesting results. It was found that most of the adult cattle on this farm were shedding Cryptosporidium albeit intermittently. Speciation of the positive samples revealed that, on this farm, the most predominant species of Cryptosporidium in adult cattle was also C. parvum. This is very unusual as most previous studies have not found this level of infection in older cattle and C. parvum is not usually found in this age group. A number of different subtypes were found in adult cattle and some animals shed more than one subtype over the course of the study. This contradicts prior findings which demonstrated that only one subtype is found on a single farm. The experimental infection trial involving infection of young (<1 week old) and older (6 week old) lambs with distinct C. parvum isolates demonstrated that an increase in age at primary infection reduces the effect of clinical disease. Animals which were infected at <1 week of age were re-challenged at 6 weeks of age with either a homologous or heterologous infection. Results revealed that previous exposure does not protect against re-infection with the same or a different isolate of C. parvum. This study also demonstrated that an increase in infective dose leads to a shorter pre-patent period and that there are variations in the clinical manifestations of different isolates of the same Cryptosporidium species.
Resumo:
When infected with Trypanosoma cruzi, Beagle dogs develop symptoms similar to those of Chagas disease in human beings, and could be an important experimental model for a better understanding of the immunopathogenic mechanisms involved in chronic chagasic infection. This study evaluates IL-10, IFN-gamma and TNF-alpha production in the sera, culture supernatant, heart and cervical lymph nodes and their correlation with cardiomegaly, cardiac inflammation and fibrosis in Beagle dogs infected with T. cruzi. Pathological analysis showed severe splenomegaly, lymphadenopathy and myocarditis in all infected dogs during the acute phase of the disease, with cardiomegaly, inflammation and fibrosis observed in 83% of the animals infected by T. cruzi during the chronic phase. The data indicate that infected animals producing IL-10 in the heart during the chronic phase and showing high IL-10 production in the culture supernatant and serum during the acute phase had lower cardiac alterations (myocarditis, fibrosis and cardiomegaly) than those with high IFN-gamma and TNF-alpha levels. These animals produced low IL-10 levels in the culture supernatant and serum during the acute phase and did not produce IL-10 in the heart during the chronic phase of the disease. Our findings showed that Beagle dogs are a good model for studying the immunopathogenic mechanism of Chagas disease, since they reproduce the clinical and immunological findings described in chagasic patients. The data suggest that the development of the chronic cardiac form of the disease is related to a strong Th1 response during the acute phase of the disease, while the development of the indeterminate form results from a blend of Th1 and Th2 responses soon after infection, suggesting that the acute phase immune response is important for the genesis of chronic cardiac lesions. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Objective: To investigate possible routes for human infection by the dog hookworm (Ancylostoma caninum). Design, setting and participant. Relatively small numbers of infective larvae were administered orally and percutaneously to an informed healthy volunteer (J K L) under medical supervision, at intervals between May 1998 and May 1999. Main outcome measures: Symptoms; weekly blood eosinophil counts; faecal microscopy. Results: A marked blood eosinophilia followed a single oral exposure to 100 infective larvae, while faecal examination remained negative. Eosinophil counts then declined gradually, although a rapid, spontaneous rise several months later, at the beginning of spring, possibly indicated reactivation of dormant larvae. Blood eosinophil numbers did not rise significantly after percutaneous infection with 200 larvae. A subsequent, smaller, oral inoculum of 20 larvae provoked an eosinophil response similar to that of the first experiment. Conclusions: Our findings suggest that, following ingestion, some infective larvae of A. caninum develop directly into adult worms in the human gut (as they do in dogs). While the percutaneous route might be the most common means of human exposure to canine hookworm larvae, leading generally to subclinical infection, oral infection may be more likely to provoke symptomatic eosinophilic enteritis.
Resumo:
The protective capabilities of three Leishmania recombinant proteins - histone 1 (H1) and hydrophilic acylated surface protein B1 (HASPB1) immunized singly, or together as a protein cocktail vaccine with Montanide, and the polyprotein MML immunized with MPL-SE adjuvant - were assessed in beagle dogs. Clinical examination of the dogs was carried out periodically under blinded conditions and the condition of the dogs defined as asymptomatic or symptomatic. At the end of the trial, we were able to confirm that following infection with L. infantum promastigotes, five out of eight dogs immunized with H1 Montanide, and four out of eight dogs immunized with either the combination of HASPB1 with Montanide or the combination of H1+HASPB1 with Montanidetrade mark, remained free of clinical signs, compared with two out of seven dogs immunized with the polyprotein MML and adjuvant MPL-SE, and two out of eight dogs in the control group. The results demonstrate that HASPB1 and H1 antigens in combination with Montanide were able to induce partial protection against canine leishmaniasis, even under extreme experimental challenge conditions.
Resumo:
Initial non-inflammatory demyelination in canine distemper virus infection (CDV) develops against a background of severe immunosuppression and is therefore, thought to be virus-induced. However, recently we found a marked invasion of T cells throughout the central nervous system (CNS) in dogs with acute distemper despite drastic damage to the immune system. In the present study, this apparent paradox was further investigated by immunophenotyping of lymphocytes, following experimental CDV challenge in vaccinated and non-vaccinated dogs. In contrast to CDV infected, unprotected dogs, vaccinated dogs did not become immunosuppressed and exhibited a strong antiviral immune response following challenge with virulent CDV. In unprotected dogs rapid and drastic lymphopenia was initially due to depletion of T cells. In peripheral blood, CD4(+) T cells were more sensitive and depleted earlier and for a longer time than CD8(+) cells which recovered soon. In the cerebrospinal fluid (CSF) we could observe an increase in the T cell to B cell and CD8(+) to CD4(+) ratios. Thus, partial protection of the CD8(+) cell population could explain why part of the immune function in acute distemper is preserved. As found earlier, T cells invaded the CNS parenchyma in these dogs but also in the protected challenged dogs, which did not develop any CNS disease at all. Since markers of T cell activation were upregulated in both groups of animals, this phenomenon could in part be related to non-specific penetration of activated T cells through the blood brain barrier. However, in diseased animals much larger numbers of T cells were found in the CNS than in the protected dogs, suggesting that massive invasion of T cells in the brain requires CDV expression in the CNS.
Resumo:
Clinical signs, humoral and cellular immune responses, and microscopic and gross tissue alterations resulting from acute experimental Ehrlichia canis infection in dogs were studied. Four dogs were inoculated with E canis and four were used as uninfected controls. After a 10-14-day incubation period, infected dogs developed pyrexia up to 41 degreesC for 6-8 days. Antibody titers to E. canis antigen were demonstrable in all inoculated dogs at 30 days post-infection. Necropsy of infected animals revealed pale mucous membranes, generalized lymphadenopathy, splenomegaly, edema and ascites. Microcopically, the main lesions were: lymphoreticular hyperplasia in cortical areas of lymph nodes and spleenic white pulp, periportal accumulation of mononuclear cells and centrolobular fatty degeneration of the liver. Kidneys presented with glomerulonephritis characterized by interstitial, mononuclear infiltration. Immunophenotyping of lymphocytes from lymph nodes and spleen sections displayed alterations in IgG, IgM, CD3+ and CD8+ cells population in infected dogs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In order to assess the immunotherapeutic potential on canine visceral leishmaniasis of the Leishmune (R) vaccine, formulated with an increased adjuvant concentration (1 mg of saponin rather than 0.5 mg), 24 mongrel dogs were infected with Leishmania (L.) chagasi. The enriched-Leishmune (R) vaccine was injected on month 6, 7 and 8 after infection, when animals were seropositive and symptomatic. The control group were injected with a saline solution. Leishmune (R)-treated dogs showed significantly higher levels of anti-FML IgG antibodies (ANOVA; p < 0.0001), a higher and stable IgG2 and a decreasing IgG I response, pointing to a TH1 T cell mediated response. The vaccine had the following effects: it led to more positive delayed type hypersensitivity reactions against Leishmania lysate in vaccinated dogs (75%) than in controls (50%), to a decreased average of CD4+ Leishmania-specific lymphocytes in saline controls (32.13%) that fell outside the 95% confidence interval of the vaccinees (41.62%, CI95% 43.93-49.80) and an increased average of the clinical scores from the saline controls (17.83) that falls outside the 95% confidence interval for the Leishmune (R) immumotherapy-treated dogs (15.75, CI95% 13.97-17.53). All dogs that received the vaccine were clustered, and showed lower clinical scores and normal CD4+ counts, whereas 42% of the untreated dogs showed very diminished CD4+ and higher clinical score. The increase in clinical signs of the saline treated group was correlated with an increase in anti-FML antibodies (p < 0.0001), the parasitological evidence (p = 0.038) and a decrease in Leishinania-specific CD4+ lymphocyte proportions (p = 0.035). These results confirm the immunotherapeutic potential of the enriched-Leishmune (R) vaccine. The vaccine reduced the clinical symptoms and evidence of parasite, modulating the outcome of the infection and the dog's potential infectiosity to phlebotomines. The enriched-Leishmune (R) vaccine was subjected to a safety analysis and found to be well tolerated and safe. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Zinc is an essential micronutrient and has significant effects on human growth, development, and immune function. Zinc supplementation or deficiency may affect the course of infection. Zinc enhances immune response against a wide range of viral, bacterial, and parasitic pathogens. In the present study, we investigated the effects of zinc sulphate (ZnSO(4)) supplementation (20 mg/kg/day) during pregnancy in mice, Swiss Webster strain infected by the Y strain of Trypanosoma cruzi. Oral supplementation of zinc sulphate in pregnant and non-pregnant infected animals did not affect the count of blood parasites as well as tissue parasitism in the heart, liver, and spleen. Zinc supplementation did not alter female body weight, the length of fetuses and neonates, placental size/weight and mortality rate. Among zinc supplied animals, no significant plasmatic zinc concentrations were observed. Concerning to tissue zinc concentrations, only the liver displayed enhanced values as compared to other organs. For placental parasitism, zinc supplied group displayed a significant decrease in amastigote burdens (P < 0.05). However due to the reduced number of parasite burdens in placenta of animals supplied with zinc, these data suggest that zinc was partially effective in up-regulating the host`s immune response against parasite, probably attenuating the infection in fetuses. (C) 2010 Elsevier Ltd. All rights reserved.