992 resultados para cDNA Library
Resumo:
Small GTP-binding proteins play a critical role in the regulation of a range of cellular processes--including growth, differentiation, and intracellular transportation. Previously, we isolated a gene, rgp1, encoding a small GTP-binding protein, by differential screening of a rice cDNA library with probe DNAs from rice tissues treated with or without 5-azacytidine, a powerful inhibitor of DNA methylation. To determine the physiological role of rgp1, the coding region was introduced into tobacco plants. Transformants, with rgp1 in either sense or antisense orientations, showed distinct phenotypic changes with reduced apical dominance, dwarfism, and abnormal flower development. These abnormal phenotypes appeared to be associated with the higher levels of endogenous cytokinins that were 6-fold those of wild-type plants. In addition, the transgenic plants produced salicylic acid and salicylic acid-beta-glucoside in an unusual response to wounding, thus conferring increased resistance to tobacco mosaic virus infection. In normal plants, the wound- and pathogen-induced signal-transduction pathways are considered to function independently. However, the wound induction of salicylic acid in the transgenic plants suggests that expression of rgp1 somehow interfered with the normal signaling pathways and resulted in cross-signaling between these distinct transduction systems. The results imply that the defense signal-transduction system consists of a complicated and finely tuned network of several regulatory factors, including cytokinins, salicylic acid, and small GTP-binding proteins.
Resumo:
We have molecularly cloned a calcium sensing receptor (CaSR) from a rat striatal cDNA library. Rat CaSR displays 92% overall homology to its bovine counterpart with seven putative transmembrane domains characteristic of the superfamily of guanine nucleotide-binding proteins and significant homology with the metabotropic glutamate receptors. Northern blot analysis reveals two transcripts in thyroid, kidney, lung, ileum, and pituitary. In brain highest regional expression of the RNA occurs in the hypothalamus and the corpus striatum. Immunohistochemistry reveals discrete punctate localizations throughout the brain that appear to be associated with nerve terminals. No staining is evident in cell bodies of neurons or glia. Cerebral arteries display an intense network of CaSR immunoreactive fibers associated with vessel innervation. CaSR on nerve terminal membranes may regulate neurotransmitter disposition in response to Ca2+ levels in the synaptic space.
Resumo:
The transcription factor NF-E2 (nuclear factor erythroid 2), interacting via DNA motifs within regulatory regions of several hematopoietic genes, is thought to mediate the enhancer activity of the globin locus control regions. By screening a human fetal liver cDNA library with probes derived from mouse NF-E2, we have isolated a splicing variant of the NF-E2 gene (fNF-E2) that differs in the 5' untranslated region from the previously reported cDNA (aNF-E2). The fNF-E2 isoform is transcribed from an alternative promoter located in the 3' end of the first intron and joined by alternative splicing to the second and third exons, which are shared by both RNA isoforms. Although the two forms produce the same protein, they are expressed in different ratios during development. fNF-E2 is more abundant in the fetal liver and less abundant in the adult bone marrow compared to the previously described form. Their distribution apparently follows the differential expression of fetal and adult hemoglobins.
Resumo:
The biochemical and molecular basis of chlorophyll (Chl) catabolism in bananas was investigated during ripening at 20°C and at an elevated temperature (35°C) where degreening is inhibited. Biochemical analysis showed that Chl breakdown products could be isolated from fruit ripened at both temperatures. The coloured breakdown products, chlorophyllide and pheophorbide, were not detected at any stage of ripening in the two treatments; however, a non-fluorescent Chl catabolite accumulated to a higher concentration at 20 than at 35°C. To investigate the ripening-related gene expression associated with these changes, a cDNA library was generated from the peel of fruit ripened at 20°C. Differential screening of this library produced 20 non-redundant families of clones including those encoding enzymes involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation and other metabolic events. The expression of these genes was followed by northern analysis in fruit ripened at 20 and 35°C.
Resumo:
Homologues of Drosophila germ cell determinant genes such as vasa, nanos and tudor have recently been implicated in development of the male germline in mice. In the present study, the mouse gene encoding Tudor domain containing protein 5 (TDRD5) was isolated from a 12.5-13.5 days post coitum (dpc) male-enriched subtracted cDNA library. Whole-mount in situ hybridization analysis of Tdrd5 expression in the mouse embryonic gonad indicated that this gene is upregulated in the developing testis from 12.5 dpc, with expression levels remaining higher in testis than ovary throughout embryogenesis. Expression of Tdrd5 was absent in testes isolated from W-e/W-e embryos, which lack germ cells. In situ hybridization (ISH) on cryosectioned 13.5 dpc testes suggests that expression of Tdrd5, like that of Oct4, is restricted to germ cells. Northern hybridization analysis of expression in adult tissues indicated that Tdrd5 is expressed in the testis only, implying that expression of this gene is restricted to the male germline throughout development to adulthood. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A full-length cDNA sequence coding for Echinococcus granulosus thioredoxin peroxidase (EgTPx) was isolated from a sheep strain protoscolex cDNA library by immunoscreening using a pool of sera from mice infected with oncospheres. EgTPx expressed as a fusion protein with glutathione S-transferase (GST) exhibited significant thiol-dependent peroxidase activity that protected plasmid DNA from damage by metal-catalyzed oxidation (MCO) in vitro. Furthermore, the suggested antioxidant role for EgTPx was reinforced in an in vivo assay, whereby its expression in BL21 bacterial cells markedly increased the tolerance and survival of the cells to high concentrations of H2O2 compared with controls. Immunolocalization studies revealed that EgTPx was specifically expressed in all tissues of the protoscolex and brood capsules. Higher intensity of labelling was detected in many, but not all, calcareous corpuscle cells in protoscoleces. The purified recombinant EgTPx protein was used to screen sera from heavily infected mice and patients with confirmed hydatid infection. Only a portion of the sera reacted positively with the EgTPx-GST fusion protein in Western blots, suggesting that EgTPx may form antibody-antigen complexes or that responses to the EgTPx antigen may be immunologically regulated. Recombinant EgTPx may prove useful for the screening of specific inhibitors that could serve as new drugs for treatment of hydatid disease. Moreover, given that TPx from different parasitic phyla were phylogenetically distant from host TPx molecules, the development of antiparasite TPx inhibitors that do not react with host TPx might be feasible. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We completed the genome sequence of Lettuce necrotic yellows virus (LNYV) by determining the nucleotide sequences of the 4a (putative phosphoprotein), 4b, M (matrix protein), G (glycoprotein) and L (polymerase) genes. The genome consists of 12,807 nucleotides and encodes six genes in the order 3' leader-N-4a(P)-4b-M-G-L-5' trailer. Sequences were derived from clones of a cDNA library from LNYV genomic RNA and from fragments amplified using reverse transcription-polymerase chain reaction. The 4a protein has a low isoelectric point characteristic for rhabdovirus phosphoproteins. The 4b protein has significant sequence similarities with the movement proteins of capillo- and trichoviruses and may be involved in cell-to-cell movement. The putative G protein sequence contains a predicted 25 amino acids signal peptide and endopeptidase cleavage site, three predicted glycosylation sites and a putative transmembrane domain. The deduced L protein sequence shows similarities with the L proteins of other plant rhabdoviruses and contains polymerase module motifs characteristic for RNA-dependent RNA polymerases of negative-strand RNA viruses. Phylogenetic analysis of this motif among rhabdoviruses placed LNYV in a group with other sequenced cytorhabdoviruses, most closely related to Strawberry crinkle virus. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The tropical abalone. Haliotis asinina. is,in ideal species to investigate the molecular mechanisms that control development. growth, reproduction and shell formation in all cultured haliotids. Here we describe the analysis of 232 expressed sequence tags (EST) obtained front a developmental H. asinina cDNA library intended for future microarray studies. From this data set we identified 183 unique gene Clusters. Of these, 90 clusters showed significant homology with sequences lodged in GenBank, ranging in function from general housekeeping to signal transduction, gene regulation and cell-cell communication. Seventy-one clusters possessed completely novel ORFs greater than 50 codons in length, highlighting the paucity of sequence data from molluscs and other lophotrochozoans. This study of developmental gene expression in H. asinina provides the foundation for further detailed analyses of abalone growth, development and reproduction.
Resumo:
Craniofacial anomalies are a common feature of human congenital dysmorphology syndromes, suggesting that genes expressed in the developing face are likely to play a wider role in embryonic development. To facilitate the identification of genes involved in embryogenesis, we previously constructed an enriched cDNA library by subtracting adult mouse liver cDNA from that of embryonic day (E)10.5 mouse pharyngeal arch cDNA. From this library, 273 unique clones were sequenced and known proteins binned into functional categories in order to assess enrichment of the library (1). We have now selected 31 novel and poorly characterised genes from this library and present bioinformatic analysis to predict proteins encoded by these genes, and to detect evolutionary conservation. Of these genes 61% (19/31) showed restricted expression in the developing embryo, and a subset of these was chosen for further in silico characterisation as well as experimental determination of subcellular localisation based on transient transfection of predicted full-length coding sequences into mammalian cell lines. Where a human orthologue of these genes was detected, chromosomal localisation was determined relative to known loci for human congenital disease.
Resumo:
The signal sequence trap technique was applied to identify genes coding for secreted and membrane bound proteins from Echinococcus granulosus, the etiologic agent of cystic hydatid disease. An E. granulosus protoscolex cDNA library was constructed in the AP-PST vector such that randomly primed cDNAs were fused with a placental alkaline phosphatase reporter gene lacking its endogenous signal peptide. E. granulosus cDNAs encoding a functional signal peptide were selected by their ability to rescue secretion of alkaline phosphatase by COS-7 cells that had been transfected with the cDNA library. Eighteen positive clones were identified and sequenced. Their deduced amino acid sequences showed significant similarity with amino acid transporters, Krebs cycle intermediates transporters, presenilins and vacuolar protein sorter proteins. Other cDNAs encoded secreted proteins without homologues. Three sequences were transcribed antisense to E. granulosus expressed sequence tags. All the mRNAs were expressed in protoscoleces and adult worms, but some of them were not found in oncospheres. The putative E. granulosus secreted and membrane bound proteins identified are likely to play important roles in the metabolism, development and survival in the host and represent potential targets for diagnosis, drugs and vaccines against E. granulosus. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The classical concept of estrogen receptor (ER) activation is that steroid passes the cell membrane, binds to its specific protein receptor in the cell's cytoplasm and the steroid-receptor complex travels to the nucleus where it activates responsive genes. This basic idea has been challenged by results of experiments demonstrating insulin-like growth factor 1 (IGF-1) activation of the ER in the complete absence of estrogen suggesting at least one other mechanism of ER activation not involving steroid. One explanation is that activation of the cell surface IGF-1 receptor leads to synthesis of an intracellular protein(s) able to bind to and stimulate the ER. Based on results using the two-hybrid system, coimmunoprecipitation and transfection-luciferase assays, we herein show that one of these proteins could well be receptor for activated C kinase 1 (RACK-1). Using the human ER type α (ER-α) as bait, a cloned complementary deoxyribonucleic acid (cDNA) library from IGF-1 treated human breast cancer MCF-7 cells was screened for ER-α - protein interactions. Many positive clones were obtained which contained the RACK-1 cDNA sequence. Coimmunoprecipitation of in-vitro translation products of the ER-α and RACK-1 confirmed the interaction between the two proteins. Transfection studies using the estrogen response element spliced to a luciferase reporter gene revealed that constitutive RACK-1 expression was able to powerfully stimulate ER-α activity under estrogen-free conditions. This effect could be enhanced by 17β-estradiol (E2) and blocked by tamoxifen, an E2 antagonist. These results show that RACK-1 is able to activate the ER-α in the absence of E2, although together with the latter, enhanced effects occur. Since RACK-1 gene expression is stimulated by IGF-1, it is distinctly possible that RACK-1 is the mediator of the stimulatory effects of IGF-1 on ER-α. © 2014 JMS.
Resumo:
The rainbow smelt (Osmerus mordax) is an anadromous teleost that produces type II antifreeze protein (AFP) and accumulates modest urea and high glycerol levels in plasma and tissues as adaptive cryoprotectant mechanisms in sub-zero temperatures. It is known that glyceroneogenesis occurs in liver via a branch in glycolysis and gluconeogenesis and is activated by low temperature; however, the precise mechanisms of glycerol synthesis and trafficking in smelt remain to be elucidated. The objective of this thesis was to provide further insight using functional genomic techniques [e.g. suppression subtractive hybridization (SSH) cDNA library construction, microarray analyses] and molecular analyses [e.g. cloning, quantitative reverse transcription - polymerase chain reaction (QPCR)]. Novel molecular mechanisms related to glyceroneogenesis were deciphered by comparing the transcript expression profiles of glycerol (cold temperature) and non-glycerol (warm temperature) accumulating hepatocytes (Chapter 2) and livers from intact smelt (Chapter 3). Briefly, glycerol synthesis can be initiated from both amino acids and carbohydrate; however carbohydrate appears to be the preferred source when it is readily available. In glycerol accumulating hepatocytes, levels of the hepatic glucose transporter (GLUT2) plummeted and transcript levels of a suite of genes (PEPCK, MDH2, AAT2, GDH and AQP9) associated with the mobilization of amino acids to fuel glycerol synthesis were all transiently higher. In contrast, in glycerol accumulating livers from intact smelt, glycerol synthesis was primarily fuelled by glycogen degradation with higher PGM and PFK (glycolysis) transcript levels. Whether initiated from amino acids or carbohydrate, there were common metabolic underpinnings. Increased PDK2 (an inhibitor of PDH) transcript levels would direct pyruvate derived from amino acids and / or DHAP derived from G6P to glycerol as opposed to oxidation via the citric acid cycle. Robust LIPL (triglyceride catabolism) transcript levels would provide free fatty acids that could be oxidized to fuel ATP synthesis. Increased cGPDH (glyceroneogenesis) transcript levels were not required for increased glycerol production, suggesting that regulation is more likely by post-translational modification. Finally, levels of a transcript potentially encoding glycerol-3-phosphatase, an enzyme not yet characterized in any vertebrate species, were transiently higher. These comparisons also led to the novel discoveries that increased G6Pase (glucose synthesis) and increased GS (glutamine synthesis) transcript levels were part of the low temperature response in smelt. Glucose may provide increased colligative protection against freezing; whereas glutamine could serve to store nitrogen released from amino acid catabolism in a non-toxic form and / or be used to synthesize urea via purine synthesis-uricolysis. Novel key aspects of cryoprotectant osmolyte (glycerol and urea) trafficking were elucidated by cloning and characterizing three aquaglyceroporin (GLP)-encoding genes from smelt at the gene and cDNA levels in Chapter 4. GLPs are integral membrane proteins that facilitate passive movement of water, glycerol and urea across cellular membranes. The highlight was the discovery that AQP10ba transcript levels always increase in posterior kidney only at low temperature. This AQP10b gene paralogue may have evolved to aid in the reabsorption of urea from the proximal tubule. This research has contributed significantly to a general understanding of the cold adaptation response in smelt, and more specifically to the development of a working scenario for the mechanisms involved in glycerol synthesis and trafficking in this species.
Resumo:
Amphibian skin secretions are unique sources of bioactive molecules, particularly bioactive peptides. In this study, the skin secretion of the white-lipped tree frog (Litoria infrafrenata) was obtained to identify peptides with putative therapeutic potential. By utilizing skin secretion-derived mRNA, a cDNA library was constructed, a frenatin gene was cloned and its encoded peptides were deduced and confirmed using RP-HPLC, MALDI-TOF and MS/MS. The deduced peptides were identified as frenatin 4.1 (GFLEKLKTGAKDFASAFVNSIKGT) and a post-translationally modified peptide, frenatin 4.2 (GFLEKLKTGAKDFASAFVNSIK.NH2). Antimicrobial activity of the peptides was assessed by determining their minimal inhibitory concentrations (MICs) using standard model microorganisms. Through studying structure–activity relationships, analogues of the two peptides were designed, resulting in synthesis of frenatin 4.1a (GFLEKLKKGAKDFASALVNSIKGT) and frenatin 4.2a (GFLLKLKLGAKLFASAFVNSIK.NH2). Both analogues exhibited improved antimicrobial activities, especially frenatin 4.2a, which displayed significant enhancement of broad spectrum antimicrobial efficiency. The peptide modifications applied in this study, may provide new ideas for the generation of leads for the design of antimicrobial peptides with therapeutic applications.
Resumo:
Dengue fever is one of the most important mosquito-borne diseases worldwide and is caused by infection with dengue virus (DENV). The disease is endemic in tropical and sub-tropical regions and has increased remarkably in the last few decades. At present, there is no antiviral or approved vaccine against the virus. Treatment of dengue patients is usually supportive, through oral or intravenous rehydration, or by blood transfusion for more severe dengue cases. Infection of DENV in humans and mosquitoes involves a complex interplay between the virus and host factors. This results in regulation of numerous intracellular processes, such as signal transduction and gene transcription which leads to progression of disease. To understand the mechanisms underlying the disease, the study of virus and host factors is therefore essential and could lead to the identification of human proteins modulating an essential step in the virus life cycle. Knowledge of these human proteins could lead to the discovery of potential new drug targets and disease control strategies in the future. Recent advances of high throughput screening technologies have provided researchers with molecular tools to carry out investigations on a large scale. Several studies have focused on determination of the host factors during DENV infection in human and mosquito cells. For instance, a genome-wide RNA interference (RNAi) screen has identified host factors that potentially play an important role in both DENV and West Nile virus replication (Krishnan et al. 2008). In the present study, a high-throughput yeast two-hybrid screen has been utilised in order to identify human factors interacting with DENV non-structural proteins. From the screen, 94 potential human interactors were identified. These include proteins involved in immune signalling regulation, potassium voltage-gated channels, transcriptional regulators, protein transporters and endoplasmic reticulum-associated proteins. Validation of fifteen of these human interactions revealed twelve of them strongly interacted with DENV proteins. Two proteins of particular interest were selected for further investigations of functional biological systems at the molecular level. These proteins, including a nuclear-associated protein BANP and a voltage-gated potassium channel Kv1.3, both have been identified through interaction with the DENV NS2A. BANP is known to be involved in NF-kB immune signalling pathway, whereas, Kv1.3 is known to play an important role in regulating passive flow of potassium ions upon changes in the cell transmembrane potential. This study also initiated a construction of an Aedes aegypti cDNA library for use with DENV proteins in Y2H screen. However, several issues were encountered during the study which made the library unsuitable for protein interaction analysis. In parallel, innate immune signalling was also optimised for downstream analysis. Overall, the work presented in this thesis, in particular the Y2H screen provides a number of human factors potentially targeted by DENV during infection. Nonetheless, more work is required to be done in order to validate these proteins and determine their functional properties, as well as testing them with infectious DENV to establish a biological significance. In the long term, data from this study will be useful for investigating potential human factors for development of antiviral strategies against dengue.
Resumo:
In Brazil, accidents with scorpions are considered of medical importance, not only by the high incidence, but also for the potentiality of the venom from some species in determining severe clinical conditions. Tityus stigmurus is a widely distributed scorpion species in Northeastern Brazil and known to cause severe human envenomations, inducing pain, hyposthesia, edema, erythema, paresthesia, headaches and vomiting. The present study uses a transcriptomic approach to characterize the molecular repertoire from the non-stimulated venom gland of Tityus stigmurus scorpion. A cDNA library was constructed and 540 clones were sequenced and grouped into 37 clusters, with more than one EST (expressed sequence tag) and 116 singlets. Forty-one percent of ESTs belong to recognized toxin-coding sequences, with antimicrobial toxins (AMP-like) the most abundant transcripts, followed by alfa KTx- like, beta KTx-like, beta NaTx-like and alfa NaTx-like. Our analysis indicated that 34% include other possible venom molecules , whose transcripts correspond to anionic peptides, hypothetical secreted peptides, metalloproteinases, cystein-rich peptides and lectins. Fifteen percent of ESTs are similar to cellular transcripts. Sequences without good matches corresponded to 11%. This investigation provides the first global view of cDNAs from Tityus stigmurus. This approach enables characterization of a large number of venom gland component molecules, which belong either to known or atypical types of venom peptides and proteins from the Buthidae family