921 resultados para bridge scales
Resumo:
Physical models are widely used in the study of geotechnical earthquake engineering phenomena, and the comparison of modelling results to observations from field reconnaissance provides a transparent means of evaluating the design of our physical models. This paper compares centrifuge tests of pile groups in laterally spreading slopes with the response of piled bridge abutments in the 2011 Christchurch earthquake. We show that the model foundation's fixity conditions strongly affect the success with which the mechanism of response of the real abutments is replicated in the tests. © 2012 American Society of Civil Engineers.
Resumo:
Viscoelasticity and poroelasticity commonly coexist as time-dependent behaviors in polymer gels. Engineering applications often require knowledge of both behaviors separated; however, few methods exist to decouple viscoelastic and poroelastic properties of gels. We propose a method capable of separating viscoelasticity and poroelasticity of gels in various mechanical tests. The viscoelastic characteristic time and the poroelastic diffusivity of a gel define an intrinsic material length scale of the gel. The experimental setup gives a sample length scale, over which the solvent migrates in the gel. By setting the sample length to be much larger or smaller than the material length, the viscoelasticity and poroelasticity of the gel will dominate at different time scales in a test. Therefore, the viscoelastic and poroelastic properties of the gel can be probed separately at different time scales of the test. We further validate the method by finite-element models and stress-relaxation experiments. © 2014 The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
Resumo:
This paper deals with the case history of a damaged one-span prestressed concrete bridge on a crucial artery near the city of Cagliari (Sardinia), along the sea-side. After being involved in a disastrous flood, attention has arisen on the worrying safety state of the deck, submitted to an intense daily traffic load. Evident signs of this severe condition were the deterioration of the beams concrete and the corrosion, the lack of tension and even the rupture of the prestressing cables. After performing a limited in situ test campaign, consisting of sclerometer, pull out and carbonation depth tests, a first evaluation of the safety of the structure was performed. After collecting the data of dynamic and static load tests as well, a comprehensive analysis have been carried out, also by means of a properly calibrated F.E. model. Finally the retrofitting design is presented, consisting of the reparation and thickening of the concrete cover, providing flexural and shear FRP external reinforcements and an external prestressing system, capable of restoring a satisfactory bearing capacity, according to the current national codes. The intervention has been calibrated by the former F.E. model with respect to transversal effects and influence of local and overall deformation of reinforced elements. © 2012 Taylor & Francis Group.
Resumo:
Surprisingly expensive to compute wall distances are still used in a range of key turbulence and peripheral physics models. Potentially economical, accuracy improving differential equation based distance algorithms are considered. These involve elliptic Poisson and hyperbolic natured Eikonal equation approaches. Numerical issues relating to non-orthogonal curvilinear grid solution of the latter are addressed. Eikonal extension to a Hamilton-Jacobi (HJ) equation is discussed. Use of this extension to improve turbulence model accuracy and, along with the Eikonal, enhance Detached Eddy Simulation (DES) techniques is considered. Application of the distance approaches is studied for various geometries. These include a plane channel flow with a wire at the centre, a wing-flap system, a jet with co-flow and a supersonic double-delta configuration. Although less accurate than the Eikonal, Poisson method based flow solutions are extremely close to those using a search procedure. For a moving grid case the Poisson method is found especially efficient. Results show the Eikonal equation can be solved on highly stretched, non-orthogonal, curvilinear grids. A key accuracy aspect is that metrics must be upwinded in the propagating front direction. The HJ equation is found to have qualitative turbulence model improving properties. © 2003 by P. G. Tucker.
Resumo:
A simple ac resistance bridge is proposed. The stability of the design is better than 10(-6), which is especially suitable for detecting tiny changes of resistance. An example of magnetoresistance measurement for a 220 nm Au film shows the good performance of the bridge. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3202284]
Resumo:
IEECAS SKLLQG
Resumo:
Chinese Academy of Sciences (ISCAS)