965 resultados para binding affinity
Resumo:
The Escherichia coli cytosolic homotetrameric protein SecB is known to be involved in protein export across the plasma membrane. A currently prevalent view holds that SecB functions exclusively as a chaperone interacting nonspecifically with unfolded proteins, not necessarily exported proteins, whereas a contrary view holds that SecB functions primarily as a specific signal-recognition factor--i.e., in binding to the signal sequence region of exported proteins. To experimentally resolve these differences we assayed for binding between chemically pure SecB and chemically pure precursor (p) form (containing a signal sequence) and mature (m) form (lacking a signal sequence) of a model secretory protein (maltose binding protein, MBP) that was C-terminally truncated. Because of the C-terminal truncation, neither p nor m was able to fold. We found that SecB bound with 100-fold higher affinity to p (Kd 0.8 nM) than it bound to m (Kd 80 nM). As the presence of the signal sequence in p is the only feature that distinguished p from m, these data strongly suggest that the high-affinity binding of SecB is to the signal sequence region and not the mature region of p. Consistent with this conclusion, we found that a wild-type signal peptide, but not an export-incompetent mutant signal peptide of another exported protein (LamB), competed for binding to p. Moreover, the high-affinity binding of SecB to p was resistant to 1 M salt, whereas the low-affinity binding of SecB to m was not. These qualitative differences suggested that SecB binding to m was primarily by electrostatic interactions, whereas SecB binding to p was primarily via hydrophobic interactions, presumably with the hydrophobic core of the signal sequence. Taken together our data strongly support the notion that SecB is primarily a specific signal-recognition factor.
Resumo:
A virus-based vector was used for the transient expression of the alfalfa mosaic virus coat protein (CP) gene in protoplasts and plants. The accumulation of wild-type CP conferred strong protection against subsequent alfalfa mosaic virus infection, enabling the efficacy of CP mutants to be determined without developing transgenic plants. Expression of the CP mRNA alone without CP accumulation conferred weaker protection against infection. The activity of the N-terminal mutant CPs in protection did not correlate with their activities in genome activation. The activity of a C-terminal mutant suggested that encapsidation did not have a role in protection. Our results indicate that interaction of the CP with alfalfa mosaic virus RNA is not important in protection, thereby leaving open the possibility that interactions with host factors lead to protection.
Resumo:
The interaction of histone H1 isolated from chicken erythrocytes with restriction fragments from plasmids pBR322 and pUC19 was studied by gel electrophoresis. Certain restriction fragments exhibited unusually high affinity for the histone, forming high molecular mass complexes at protein to DNA ratios at which the other fragments did not show evidence for binding. The highly preferred fragments are intrinsically curved, as judged by their electrophoretic mobility in polyacrylamide gels, by computer modeling, and by imaging with scanning force microscopy. However, control experiments with either curved portions of the same fragments or highly curved kinetoplast DNA fragments showed that the presence of curvature alone was not sufficient for preferential binding. By using various restriction fragments centered around the highly preferred sequence, it was found that the high-affinity binding required in addition the presence of specific sequences on both sides of the region of curvature. Thus, both curvature and the presence of specific sites seem to be required to generate high affinity.
Resumo:
We have inserted a fourth protein ligand into the zinc coordination polyhedron of carbonic anhydrase II (CAII) that increases metal affinity 200-fold (Kd = 20 fM). The three-dimensional structures of threonine-199-->aspartate (T199D) and threonine-199-->glutamate (T199E) CAIIs, determined by x-ray crystallographic methods to resolutions of 2.35 Angstrum and 2.2 Angstrum, respectively, reveal a tetrahedral metal-binding site consisting of H94, H96, H119, and the engineered carboxylate side chain, which displaces zinc-bound hydroxide. Although the stereochemistry of neither engineered carboxylate-zinc interaction is comparable to that found in naturally occurring protein zinc-binding sites, protein-zinc affinity is enhanced in T199E CAII demonstrating that ligand-metal separation is a significant determinant of carboxylate-zinc affinity. In contrast, the three-dimensional structure of threonine-199-->histidine (T199H) CAII, determined to 2.25-Angstrum resolution, indicates that the engineered imidazole side chain rotates away from the metal and does not coordinate to zinc; this results in a weaker zinc-binding site. All three of these substitutions nearly obliterate CO2 hydrase activity, consistent with the role of zinc-bound hydroxide as catalytic nucleophile. The engineering of an additional protein ligand represents a general approach for increasing protein-metal affinity if the side chain can adopt a reasonable conformation and achieve inner-sphere zinc coordination. Moreover, this structure-assisted design approach may be effective in the development of high-sensitivity metal ion biosensors.
Resumo:
The albA gene from Klebsiella oxytoca encodes a protein that binds albicidin phytotoxins and antibiotics with high affinity. Previously, it has been shown that shifting pH from 6 to 4 reduces binding activity of AlbA by about 30%, indicating that histidine residues might be involved in substrate binding. In this study, molecular analysis of the albA coding region revealed sequence discrepancies with the albA sequence reported previously, which were probably due to sequencing errors. The albA gene was subsequently cloned from K oxytoca ATCC 13182(T) to establish the revised sequence. Biochemical and molecular approaches were used to determine the functional role of four histidine residues (His(78), HiS(125), HiS(141) and His(189)) in the corrected sequence for AlbA. Treatment of AlbA with diethyl pyrocarbonate (DEPC), a histidine-specific alkylating reagent, reduced binding activity by about 95%. DEPC treatment increased absorbance at 240-244 nm by an amount indicating conversion to N-carbethoxyhistidine of a single histidine residue per AlbA molecule. Pretreatment with albicidin protected AlbA against modification by DEPC, with a 1 : 1 molar ratio of albicidin to the protected histidine residues. Based on protein secondary structure and amino acid surface probability indices, it is predicted that HiS125 might be the residue required for albicidin binding. Mutation of HiS125 to either alanine or leucine resulted in about 32% loss of binding activity, and deletion of HiS125 totally abolished binding activity. Mutation of HiS125 to arginine and tyrosine had no effect. These results indicate that HiS125 plays a key role either in an electrostatic interaction between AlbA and albicidin or in the conformational dynamics of the albicidin-binding site.
Resumo:
This review summarizes developments in the use of affinity chromatography to characterize biospecific interactions in terms of reaction stoichiometry and equilibrium constant. In that regard, the biospecificity incorporated into the design of the experiment ensures applicability of the method regardless of the sizes of the reacting solutes. By the adoption of different experimental strategies (column chromatography, simple partition equilibrium, solid-phase immunoassay and biosensor technology protocols) quantitatiative affinity chromatography can be used to characterize interactions governed by an extremely broad range of binding affinities. In addition, the link between ligand-binding studies and quantitative affinity chromatography is illustrated by means of partition equilibrium studies of glycolytic enzyme interactions with muscle myofibrils. an exercise which emphasizes that the same theoretical expressions apply to naturally occurring examples of affinity chromatography in the cellular environment. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Mannose-binding type 1 pili are important virulence factors for the establishment of Escherichia coli urinary tract infections (UTIs). These infections are initiated by adhesion of uropathogenic E. coli to uroplakin receptors in the uroepithelium via the FimH adhesin located at the tips of type 1 pili. Blocking of bacterial adhesion is able to prevent infection. Here, we provide for the first time binding data of the molecular events underlying type 1 fimbrial adherence, by crystallographic analyses of the FimH receptor binding domains from a uropathogenic and a K-12 strain, and affinity measurements with mannose, common mono- and disaccharides, and a series of alkyl and aryl mannosides. Our results illustrate that the lectin domain of the FimH adhesin is a stable and functional entity and that an exogenous butyl alpha- D-mannoside, bound in the crystal structures, exhibits a significantly better affinity for FimH (K-d = 0.15 muM) than mannose (K-d = 2.3 muM). Exploration of the binding affinities of alpha-D-mannosides with longer alkyl tails revealed affinities up to 5 nM. Aryl mannosides and fructose can also bind with high affinities to the FimH lectin domain, with a 100-fold improvement and 15-fold reduction in affinity, respectively, compared with mannose. Taken together, these relative FimH affinities correlate exceptionally well with the relative concentrations of the same glycans needed for the inhibition of adherence of type 1 piliated E. coli. We foresee that our findings will spark new ideas and initiatives for the development of UTI vaccines and anti-adhesive drugs to prevent anticipated and recurrent UTIs.
Resumo:
1. The role of individual residues in the 8-18 helix of CGRP 8-37 in promoting high-affinity binding to CGRP 1 receptors expressed on rat L6 and human SK-N-MC cells has been examined. The relative potencies of various derivatives were estimated from their ability to inhibit the human αCGRP-mediated increase in cyclic AMP production and the binding of [ 125I]-human αCGRP. 3. Arg 11 and Arg 18 were replaced by serines to give [Ser 11.18]CGRP 8-37. These bound with pKi values <6 to SK-N-MC cells and had apparent pA 2 values of 5.81 ± 0.04 and 5.31 ± 0.11 on SK-N-MC and L6 cells. CGRP 8-37 had a pKi of 8.22 on SK-N-MC cells and pK b values on the above cell lines of 8.95±0.04 and 8.76±0.04. 3. The arginines were replaced with glutamic acid residues. [Glu 11]CGRP 8-37 had a pK b of 7.14±0.14 on SK-N-MC cells (pKi=7.05±0.05) and 6.99±0.08 on L6 cells. [Glu 18]CGRP 8-37 had a pK b of 7.10±0.0.08 on SK-N-MC cells (pKi=6.91±0.23) and 7.12±0.09 on L6 cells. 4. Leu 12, Leu 15 and Leu 16 were replaced by benzoyl-phenylalanine (bpa) residues. On SK-N-MC cells, the apparent pA 2 values of [bpa 12]-, [bpa 15]- and [bpa 16]CGRP 8-37 were respectively 7.43±0.23, 8.34±0.11 and 5.66±0.16 (pKi values of 7.14±0.17, 7.66±0.21 and <6): on L6 cells they were 7.96±0.36, 8.28±0.21 and 6.09±0.04 (all n=3). 5. It is concluded that the Arg 11 and Arg 18 are involved in specific electrostatic interactions with other residues, either on the CGRP 1 receptors or elsewhere on CGRP 8-37. Leu 16 is in a conformationally restricted site when CGRP 8-37 binds to CGRP 1 receptors, unlike Leu 12 and Leu 15.
Resumo:
Cleavage by the proteasome is responsible for generating the C terminus of T-cell epitopes. Modeling the process of proteasome cleavage as part of a multi-step algorithm for T-cell epitope prediction will reduce the number of non-binders and increase the overall accuracy of the predictive algorithm. Quantitative matrix-based models for prediction of the proteasome cleavage sites in a protein were developed using a training set of 489 naturally processed T-cell epitopes (nonamer peptides) associated with HLA-A and HLA-B molecules. The models were validated using an external test set of 227 T-cell epitopes. The performance of the models was good, identifying 76% of the C-termini correctly. The best model of proteasome cleavage was incorporated as the first step in a three-step algorithm for T-cell epitope prediction, where subsequent steps predicted TAP affinity and MHC binding using previously derived models.
Resumo:
The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs). In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A(2) (TXA(2)) and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C(4) (LTC(4))-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA(2) analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD(7). In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA(2) analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA(2) analog U46619 is stabilized by hydrogen bonding interactions of the omega-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC(4) and occupies a very similar position to LTE(4) in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation.
Resumo:
Background: kappa-PVIIA is a 27-residue polypeptide isolated from the venom of Conus purpurascens and is the first member of a new class of conotoxins that block potassium channels. By comparison to other ion channels of eukaryotic cell membranes, voltage-sensitive potassium channels are relatively simple and methodology has been developed for mapping their interactions with small-peptide toxins, PVIIA, therefore, is a valuable new probe of potassium channel structure. This study of the solution structure and mode of channel binding of PVIIA forms the basis for mapping the interacting residues at the conotoxin-ion channel interface. Results: The three-dimensional structure of PVIIA resembles the triple-stranded beta sheet/cystine-knot motif formed by a number of toxic and inhibitory peptides. Subtle structural differences, predominantly in loops 2 and 4, are observed between PVIIA and other conotoxins with similar structural frameworks, however. Electrophysiological binding data suggest that PVIIA blocks channel currents by binding in a voltage-sensitive manner to the external vestibule and occluding the pore, Comparison of the electrostatic surface of PVIIA with that of the well-characterised potassium channel blocker charybdotoxin suggests a likely binding orientation for PVIIA, Conclusions: Although the structure of PVIIA is considerably different to that of the alpha K scorpion toxins, it has a similar mechanism of channel blockade. On the basis of a comparison of the structures of PVIIA and charybdotoxin, we suggest that Lys19 of PVIIA is the residue which is responsible for physically occluding the pore of the potassium channel.
Resumo:
A simple theoretical framework is presented for bioassay studies using three component in vitro systems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an Ii-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein to in vitro systems. The algorithm is tested by application to a published data set from an experimental study in an in vitro system (Lim et al., 1990, Endocrinology 127, 1287-1291). Predicted changes show good agreement (within 8%) with experimental observations. (C) 1998 Academic Press Limited.
Resumo:
Motivation: Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatic method for the prediction of peptide binding to MHC class II molecules. Results: Experimental binding data and expert knowledge of anchor positions and binding motifs were combined with an evolutionary algorithm (EA) and an artificial neural network (ANN): binding data extraction --> peptide alignment --> ANN training and classification. This method, termed PERUN, was implemented for the prediction of peptides that bind to HLA-DR4(B1*0401). The respective positive predictive values of PERUN predictions of high-, moderate-, low- and zero-affinity binder-a were assessed as 0.8, 0.7, 0.5 and 0.8 by cross-validation, and 1.0, 0.8, 0.3 and 0.7 by experimental binding. This illustrates the synergy between experimentation and computer modeling, and its application to the identification of potential immunotheraaeutic peptides.
Resumo:
The ligand-binding domain of the low-density lipoprotein (LDL) receptor is comprised of seven tandemly repeated ligand-binding modules, each being approximately 40 amino acids long and containing six conserved cysteine residues. We have expressed and characterized a concatemer of the first two modules (LB1 and LB2) of the human LDL receptor. Oxidative folding of the recombinant concatemer (rLB(1-2)), in the presence of calcium ions, gave a single dominant isomer with six disulfide bonds. Peptic cleavage of the short Linker region that connects the last cysteine residue of LB1 and the first cysteine residue of LB2 yielded two discrete fragments, thus excluding the presence of intermodule disulfide bonds. The N-terminal module, LB1, reacted with a conformation-specific monoclonal antibody (IgG-C7) made to LB1 in the native LDL receptor. From this, we concluded that the first module was correctly folded, with the same set of disulfide bonds as LB1 of the LDL receptor. The disulfide bond connections of LB2 were identified from mass spectral analysis of fragments formed by digestion of the C-terminal peptic fragment with elastase. These data showed that the disulfide bonds of LB2 connected Cys(I) and Cys(III), Cys(II) and Cys(V), and Cys(IV) and Cys(VI). This pattern is identical to that found for recombinant LB1 and LB2. The concatemer has two high-affinity calcium-binding sites, one per module. An analysis of the secondary chemical shifts of C alpha protons shows that the conformations of LB1 and LB2 in the concatemer are very similar to those of the individual modules, with no evidence for strong interactions between the two modules.
Resumo:
Four discontinuous extracellular sequence domains have been proposed to form the ligand binding sites of the ligand-gated ion channel receptor superfamily. In this study, we investigated the role of 12 contiguous residues of the inhibitory glycine receptor that define the proposed loop A ligand binding domain; Using the techniques of site-directed mutagenesis and patch-clamp electrophysiology, four of the 12 residues were shown to have impaired ligand binding. Three mutants, I93A, A101H, and N102A, resulted in significant (17-44-fold) increases in the agonist EC50 values as compared with the wild-type glycine receptor, whereas Hill coefficients, I-max values, and antagonist affinity remained largely unaffected. Consideration of receptor efficacy values indicates that these residues are involved in ligand binding rather than channel activation. A fourth mutant, W94A, failed to give rise to any glycine-activated currents, although cell-surface expression was observed, suggesting that this residue may also be involved in agonist binding. These data provide the most extensive characterization of the loop A ligand binding domain available to date and define two new residue locations, Ile(93) and Asn(102), as contributing to the four-loop model of ligand binding.