974 resultados para bevioral coding
Resumo:
Distributed source coding (DSC) has recently been considered as an efficient approach to data compression in wireless sensor networks (WSN). Using this coding method multiple sensor nodes compress their correlated observations without inter-node communications. Therefore energy and bandwidth can be efficiently saved. In this paper, we investigate a randombinning based DSC scheme for remote source estimation in WSN and its performance of estimated signal to distortion ratio (SDR). With the introduction of a detailed power consumption model for wireless sensor communications, we quantitatively analyze the overall network energy consumption of the DSC scheme. We further propose a novel energy-aware transmission protocol for the DSC scheme, which flexibly optimizes the DSC performance in terms of either SDR or energy consumption, by adapting the source coding and transmission parameters to the network conditions. Simulations validate the energy efficiency of the proposed adaptive transmission protocol. © 2007 IEEE.
Resumo:
We have investigated how optimal coding for neural systems changes with the time available for decoding. Optimization was in terms of maximizing information transmission. We have estimated the parameters for Poisson neurons that optimize Shannon transinformation with the assumption of rate coding. We observed a hierarchy of phase transitions from binary coding, for small decoding times, toward discrete (M-ary) coding with two, three and more quantization levels for larger decoding times. We postulate that the presence of subpopulations with specific neural characteristics could be a signiture of an optimal population coding scheme and we use the mammalian auditory system as an example.
Resumo:
We demonstrate a novel subcarrier coding scheme combined with pre-EDC for fibre nonlinearity mitigation in CO-OFDM, showing that a performance improvement of 1.5 dB can be achieved in a 150 Gb/s BPSK PDM CO-OFDM transmission.
Resumo:
We propose a new approach to the generation of an alphabet for secret key exchange relying on small variations in the cavity length of an ultra-long fiber laser. This new concept is supported by experimental results showing how the radio-frequency spectrum of the laser can be exploited as a carrier to exchange information. The test bench for our proof of principle is a 50 km-long fiber laser linking two users, Alice and Bob, where each user can randomly add an extra 1 km-long segment of fiber. The choice of laser length is driven by two independent random binary values, which makes such length become itself a random variable. The security of key exchange is ensured whenever the two independent random choices lead to the same laser length and, hence, to the same free spectral range.
Resumo:
We present experimental results on a 50km fiber laser switching among four different values of the free-spectral range for possible applications in secure key-distribution. © 2014 OSA.
Resumo:
In this paper, we demonstrate through computer simulation and experiment a novel subcarrier coding scheme combined with pre-electrical dispersion compensation (pre-EDC) for fiber nonlinearity mitigation in coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. As the frequency spacing in CO-OFDM systems is usually small (tens of MHz), neighbouring subcarriers tend to experience correlated nonlinear distortions after propagation over a fiber link. As a consequence, nonlinearity mitigation can be achieved by encoding and processing neighbouring OFDM subcarriers simultaneously. Herein, we propose to adopt the concept of dual phase conjugated twin wave for CO-OFDM transmission. Simulation and experimental results show that this simple technique combined with 50% pre-EDC can effectively offer up to 1.5 and 0.8 dB performance gains in CO-OFDM systems with BPSK and QPSK modulation formats, respectively.
Resumo:
GitHub is the most popular repository for open source code (Finley 2011). It has more than 3.5 million users, as the company declared in April 2013, and more than 10 million repositories, as of December 2013. It has a publicly accessible API and, since March 2012, it also publishes a stream of all the events occurring on public projects. Interactions among GitHub users are of a complex nature and take place in different forms. Developers create and fork repositories, push code, approve code pushed by others, bookmark their favorite projects and follow other developers to keep track of their activities. In this paper we present a characterization of GitHub, as both a social network and a collaborative platform. To the best of our knowledge, this is the first quantitative study about the interactions happening on GitHub. We analyze the logs from the service over 18 months (between March 11, 2012 and September 11, 2013), describing 183.54 million events and we obtain information about 2.19 million users and 5.68 million repositories, both growing linearly in time. We show that the distributions of the number of contributors per project, watchers per project and followers per user show a power-law-like shape. We analyze social ties and repository-mediated collaboration patterns, and we observe a remarkably low level of reciprocity of the social connections. We also measure the activity of each user in terms of authored events and we observe that very active users do not necessarily have a large number of followers. Finally, we provide a geographic characterization of the centers of activity and we investigate how distance influences collaboration.
Resumo:
We propose a new approach for secret key exchange involving the variation of the cavity length of an ultra-long fibre laser. The scheme is based on the realisation that the free spectral range of the laser cavity can be used as an information carrier. We present a proof-of-principle demonstration of this new concept using a 50-km-long fibre laser to link two users, both of whom can randomly add an extra 1-km-long fibre segment.
Resumo:
2000 Mathematics Subject Classification: 94A29, 94B70
Resumo:
Polynomial phase modulated (PPM) signals have been shown to provide improved error rate performance with respect to conventional modulation formats under additive white Gaussian noise and fading channels in single-input single-output (SISO) communication systems. In this dissertation, systems with two and four transmit antennas using PPM signals were presented. In both cases we employed full-rate space-time block codes in order to take advantage of the multipath channel. For two transmit antennas, we used the orthogonal space-time block code (OSTBC) proposed by Alamouti and performed symbol-wise decoding by estimating the phase coefficients of the PPM signal using three different methods: maximum-likelihood (ML), sub-optimal ML (S-ML) and the high-order ambiguity function (HAF). In the case of four transmit antennas, we used the full-rate quasi-OSTBC (QOSTBC) proposed by Jafarkhani. However, in order to ensure the best error rate performance, PPM signals were selected such as to maximize the QOSTBC’s minimum coding gain distance (CGD). Since this method does not always provide a unique solution, an additional criterion known as maximum channel interference coefficient (CIC) was proposed. Through Monte Carlo simulations it was shown that by using QOSTBCs along with the properly selected PPM constellations based on the CGD and CIC criteria, full diversity in flat fading channels and thus, low BER at high signal-to-noise ratios (SNR) can be ensured. Lastly, the performance of symbol-wise decoding for QOSTBCs was evaluated. In this case a quasi zero-forcing method was used to decouple the received signal and it was shown that although this technique reduces the decoding complexity of the system, there is a penalty to be paid in terms of error rate performance at high SNRs.
Resumo:
Recently, polynomial phase modulation (PPM) was shown to be a power- and bandwidth-efficient modulation format. These two characteristics are in high demand nowadays specially in mobile applications, where devices with size, weight, and power (SWaP) constraints are common. In this paper, we propose implementing a full-diversity quasiorthogonal space-time block code (QOSTBC) using polynomial phase signals as modulation format. QOSTBCs along with PPM are used in order to improve the power efficiency of communication systems with four transmit antennas. We obtain the optimal PPM constellations that ensure full diversity and maximize the QOSTBC's minimum coding gain distance. Simulation results show that by using QOSTBCs along with a properly selected PPM constellation, full diversity in flat fading channels and thus low BER at high signal-to-noise ratios (SNR) can be ensured. More importantly, it is also shown that QOSTBCs using PPM achieve a better error performance than those using conventional modulation formats.
Resumo:
I thank George Pandarakalam for research assistance; Hans-Jörg Rheinberger for hosting my stay at the Max Planck Institute for History of Science, Berlin; and Sahotra Sarkar and referees of this journal for offering detailed comments. Funded by the Wellcome Trust (WT098764MA).
Resumo:
I thank George Pandarakalam for research assistance; Hans-Jörg Rheinberger for hosting my stay at the Max Planck Institute for History of Science, Berlin; and Sahotra Sarkar and referees of this journal for offering detailed comments. Funded by the Wellcome Trust (WT098764MA).
Resumo:
This dissertation presents a study and experimental research on asymmetric coding of stereoscopic video. A review on 3D technologies, video formats and coding is rst presented and then particular emphasis is given to asymmetric coding of 3D content and performance evaluation methods, based on subjective measures, of methods using asymmetric coding. The research objective was de ned to be an extension of the current concept of asymmetric coding for stereo video. To achieve this objective the rst step consists in de ning regions in the spatial dimension of auxiliary view with di erent perceptual relevance within the stereo pair, which are identi ed by a binary mask. Then these regions are encoded with better quality (lower quantisation) for the most relevant ones and worse quality (higher quantisation) for the those with lower perceptual relevance. The actual estimation of the relevance of a given region is based on a measure of disparity according to the absolute di erence between views. To allow encoding of a stereo sequence using this method, a reference H.264/MVC encoder (JM) has been modi ed to allow additional con guration parameters and inputs. The nal encoder is still standard compliant. In order to show the viability of the method subjective assessment tests were performed over a wide range of objective qualities of the auxiliary view. The results of these tests allow us to prove 3 main goals. First, it is shown that the proposed method can be more e cient than traditional asymmetric coding when encoding stereo video at higher qualities/rates. The method can also be used to extend the threshold at which uniform asymmetric coding methods start to have an impact on the subjective quality perceived by the observers. Finally the issue of eye dominance is addressed. Results from stereo still images displayed over a short period of time showed it has little or no impact on the proposed method.
Resumo:
This paper will look at the benefits and limitations of content distribution using Forward Error Correction (FEC) in conjunction with the Transmission Control Protocol (TCP). FEC can be used to reduce the number of retransmissions which would usually result from a lost packet. The requirement for TCP to deal with any losses is then greatly reduced. There are however side-effects to using FEC as a countermeasure to packet loss: an additional requirement for bandwidth. When applications such as real-time video conferencing are needed, delay must be kept to a minimum, and retransmissions are certainly not desirable. A balance, therefore, between additional bandwidth and delay due to retransmissions must be struck. Our results show that the throughput of data can be significantly improved when packet loss occurs using a combination of FEC and TCP, compared to relying solely on TCP for retransmissions. Furthermore, a case study applies the result to demonstrate the achievable improvements in the quality of streaming video perceived by end users.