976 resultados para and bacteria


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, most individuals spend about 80% of their time indoor and, consequently, the exposure to the indoor environment becomes more relevant than to the outdoor one. Children spend most of their time at home and at school and evaluations of their indoor environment are important for the time-weighted exposure. Due to their airways still in development, children are a sensitive group with higher risk than adults. Larger impact in health and educational performance of children demand indoor air quality studies of schools. The aim of this study was to assess the children exposure to bioaerosols. A methodology based upon passive sampling was applied to evaluate fungi, bacteria and pollens; its procedures and applicability was optimized. An indoor air study by passive sampling represents an easier and cheaper method when comparing with the use of automatic active samplers. Furthermore, it is possible to achieve important quality information without interfering in the classroom activities. The study was conducted in three schools, representative of different environments in the Lisbon urban area, at three different periods of the year to obtain a seasonal variation, to estimate the variability through the city and to understand the underneath causes. Fungi and bacteria were collected indoor and outdoor of the classrooms to determine the indoor/outdoor ratios and to assess the level of outdoor contamination upon the indoor environment. The children's exposure to pollen grains inside the classrooms was also assessed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trypsin is required in the hemagglutinin (HA) cleavage to in vitro influenza viruses activation. This HA cleavage is necessary for virus cell entry by receptor-mediated endocytosis. Bacteria in the respiratory tract are potential sources of proteases that could contribute to the cleavage of influenza virus in vivo. From 47 samples collected from horses, pigs, and from humans, influenza presence was confirmed in 13 and these samples demonstrated co-infection of influenza with flagellated bacteria, Stenotrophomonas maltophilia from the beginning of the experiments. Despite treatment with antibiotics, the bacteria remained resistant in several of the co-infected samples (48.39%). These bacteria, considered opportunistic invaders from environmental sources, are associated with viral infections in upper respiratory tract of hosts. The protease (elastase), secreted by Stenotrophomonas maltophilia plays a role in the potentiation of influenza virus infection. Proteolytic activity was detected by casein agar test. Positive samples from animals and humans had either a potentiated influenza infectivity or cytopathic effect (CPE) in MDCK and NCI H292 cells, Stenotrophomonas maltophilia were always present. Virus and bacteria were observed ultrastructurally. These in vitro findings show that microbial proteases could contribute to respiratory complications by host protease activity increasing inflammation or destroying endogenous cell protease inhibitors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Humans live in symbiosis with 10(14) commensal bacteria among which >99% resides in their gastrointestinal tract. The molecular bases pertaining to the interaction between mucosal secretory IgA (SIgA) and bacteria residing in the intestine are not known. Previous studies have demonstrated that commensals are naturally coated by SIgA in the gut lumen. Thus, understanding how natural SIgA interacts with commensal bacteria can provide new clues on its multiple functions at mucosal surfaces. Using fluorescently labeled, nonspecific SIgA or secretory component (SC), we visualized by confocal microscopy the interaction with various commensal bacteria, including Lactobacillus, Bifidobacteria, Escherichia coli, and Bacteroides strains. These experiments revealed that the interaction between SIgA and commensal bacteria involves Fab- and Fc-independent structural motifs, featuring SC as a crucial partner. Removal of glycans present on free SC or bound in SIgA resulted in a drastic drop in the interaction with Gram-positive bacteria, indicating the essential role of carbohydrates in the process. In contrast, poor binding of Gram-positive bacteria by control IgG was observed. The interaction with Gram-negative bacteria was preserved whatever the molecular form of protein partner used, suggesting the involvement of different binding motifs. Purified SIgA and SC from either mouse hybridoma cells or human colostrum exhibited identical patterns of recognition for Gram-positive bacteria, emphasizing conserved plasticity between species. Thus, sugar-mediated binding of commensals by SIgA highlights the currently underappreciated role of glycans in mediating the interaction between a highly diverse microbiota and the mucosal immune system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of contaminants such as arsenic, cadmium and lead are released into the environment from natural and anthropogenic sources contaminating food and water. Chronic oral ingestion of arsenic, cadmium and lead is associated with adverse effects in the skin, internal organs and nervous system. In addition to conventional methods, biosorption using inactivated biomasses of algae, fungi and bacteria has been introduced as a novel method for decontamination of toxic metals from water. The aim of this work was to evaluate the applicability of lactic acid bacteria as tools for heavy metal removal from water and characterize their properties for further development of a biofilter. The results established that in addition to removal of mycotoxins, cyanotoxins and heterocyclic amines, lactic acid bacteria have a capacity to bind cationic heavy metals, cadmium and lead. The binding was found to be dependent on the bacterial strain and pH, and occurred rapidly on the bacterial surface, but was reduced in the presence of other cationic metals. The data demonstrates that the metals were bound by electrostatic interactions to cell wall components. Transmission electron micrographs showed the presence of lead deposits on the surface of biomass used in the lead binding studies, indicating involvement of another uptake/binding mechanism. The most efficient strains bound up to 55 mg Cd and 176 mg Pb / g dry biomass. A low removal of anionic As(V) was also observed after chemical modification of the cell wall. Full desorption of bound cadmium and lead using either dilute HNO3 or EDTA established the reversibility of binding. Removal of both metals was significantly reduced when biomass regenerated with EDTA was used. Biomass regenerated with dilute HNO3 retained its cadmium binding capacity well, but lead binding was reduced. The results established that the cadmium and lead binding capacity of lactic acid bacteria, and factors affecting it, are similar to what has been previously observed for other biomasses used for the same purpose. However, lactic acid bacteria have a capacity to remove other aqueous contaminants such as cyanotoxins, which may give them an additional advantage over the other alternatives. Further studies focusing on immobilization of biomass and the removal of several contaminants simultaneously using immobilized bacteria are required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Chlamydiales order is composed of nine families of strictly intracellular bacteria. Among them, Chlamydia trachomatis, C. pneumoniae, and C. psittaci are established human pathogens, whereas Waddlia chondrophila and Parachlamydia acanthamoebae have emerged as new pathogens in humans. However, despite their medical importance, their biodiversity and ecology remain to be studied. Even if arthropods and, particularly, ticks are well known to be vectors of numerous infectious agents such as viruses and bacteria, virtually nothing is known about ticks and chlamydia. This study investigated the prevalence of Chlamydiae in ticks. Specifically, 62,889 Ixodes ricinus ticks, consolidated into 8,534 pools, were sampled in 172 collection sites throughout Switzerland and were investigated using pan-Chlamydiales quantitative PCR (qPCR) for the presence of Chlamydiales DNA. Among the pools, 543 (6.4%) gave positive results and the estimated prevalence in individual ticks was 0.89%. Among those pools with positive results, we obtained 16S rRNA sequences for 359 samples, allowing classification of Chlamydiales DNA at the family level. A high level of biodiversity was observed, since six of the nine families belonging to the Chlamydiales order were detected. Those most common were Parachlamydiaceae (33.1%) and Rhabdochlamydiaceae (29.2%). "Unclassified Chlamydiales" (31.8%) were also often detected. Thanks to the huge amount of Chlamydiales DNA recovered from ticks, this report opens up new perspectives on further work focusing on whole-genome sequencing to increase our knowledge about Chlamydiales biodiversity. This report of an epidemiological study also demonstrates the presence of Chlamydia-related bacteria within Ixodes ricinus ticks and suggests a role for ticks in the transmission of and as a reservoir for these emerging pathogenic Chlamydia-related bacteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fungi and bacteria are key agents in plant litter decomposition in freshwater ecosystems. However, the specific roles of these two groups and their interactions during the decomposition process are unclear. We compared the growth and patterns of degradativeenzymes expressed by communities of bacteria and fungi grown separately and in coexistence on Phragmites leaves. The two groups displayed both synergistic and antagonistic interactions. Bacteria grew better together with fungi than alone. In addition, there was a negative effect of bacteria on fungi, which appeared to be caused by suppression of fungal growth and biomass accrual rather than specifically affecting enzyme activity. Fungi growing alone had a high capacity for the decomposition of plant polymers such as lignin, cellulose, and hemicellulose. In contrast, enzyme activities were in general low when bacteria grew alone, and the activity of key enzymes in the degradation of lignin and cellulose (phenol oxidase and cellobiohydrolase) was undetectable in the bacteria-only treatment. Still, biomass-specific activities of most enzymes were higher in bacteria than in fungi. The low total activity and growth of bacteria in the absence of fungi in spite of apparent high enzymatic efficiency during the degradation of many substrates suggest that fungi provide the bacteria with resources that the bacteria were not able to acquire on their own, most probably intermediate decomposition products released by fungi that could be used by bacteria

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst) DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of yeasts and bacteria was studied in 26 patients with denture stomatites, and the results compared with the data of the normal mucosa foi edentoulous patients, who used or not upper dentures. The use of dentures caused an increase in the amount of yeasts, and there was a correlation with the severity of the stomatitis. Gram positives cocci and bacilus predominated in all studied groups, but in cases of stomatitis there was an increase in the amount of Gram negative cocci and filamentous. These results suggest that besides yeasts, modifications of the bacteria flora can be relevant for the development of denture stomatitis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antibody microarrays are of great research interest because of their potential application as biosensors for high-throughput protein and pathogen screening technologies. In this active area, there is still a need for novel structures and assemblies providing insight in binding interactions such as spherical and annulus-shaped protein structures, e.g. for the utilization of curved surfaces for the enhanced protein-protein interactions and detection of antigens. Therefore, the goal of the presented work was to establish a new technique for the label-free detection of bio-molecules and bacteria on topographically structured surfaces, suitable for antibody binding.rnIn the first part of the presented thesis, the fabrication of monolayers of inverse opals with 10 μm diameter and the immobilization of antibodies on their interior surface is described. For this purpose, several established methods for the linking of antibodies to glass, including Schiff bases, EDC/S-NHS chemistry and the biotin-streptavidin affinity system, were tested. The employed methods included immunofluorescence and image analysis by phase contrast microscopy. It could be shown that these methods were not successful in terms of antibody immobilization and adjacent bacteria binding. Hence, a method based on the application of an active-ester-silane was introduced. It showed promising results but also the need for further analysis. Especially the search for alternative antibodies addressing other antigens on the exterior of bacteria will be sought-after in the future.rnAs a consequence of the ability to control antibody-functionalized surfaces, a new technique employing colloidal templating to yield large scale (~cm2) 2D arrays of antibodies against E. coli K12, eGFP and human integrin αvβ3 on a versatile useful glass surface is presented. The antibodies were swept to reside around the templating microspheres during solution drying, and physisorbed on the glass. After removing the microspheres, the formation of annuli-shaped antibody structures was observed. The preserved antibody structure and functionality is shown by binding the specific antigens and secondary antibodies. The improved detection of specific bacteria from a crude solution compared to conventional “flat” antibody surfaces and the setting up of an integrin-binding platform for targeted recognition and surface interactions of eukaryotic cells is demonstrated. The structures were investigated by atomic force, confocal and fluorescence microscopy. Operational parameters like drying time, temperature, humidity and surfactants were optimized to obtain a stable antibody structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antibiotics are emerging contaminants worldwide. Due to insufficient policy regulations, public awareness, and the constant exposure of the environment to antibiotic sources has created a major environmental concern. Wastewater treatment plants (WWTP) are not equipped to filter-out these compounds before the discharge of the disinfected effluent into water sources (e.g., lakes and streams) and current available technologies are not equipped to remediate these compounds from environmental sources. Hence, the challenge remains to establish a biological system to remove these antibiotics from wastewater. An invitro hydroponic remediation system was developed using vetiver grass (Chrysopogon zizanioides L. Nash) to remediate tetracycline (TC) from water. Comparative metabolomics studies were conducted to investigate the metabolites/pathways associated with tetracycline metabolism in plants and TC-degrading bacteria. The results show that vetiver plants effectively uptake tetracycline from water sources. Vetiver root-associated bacteria recovered during the hydroponic remediation trial were highly tolerant to TC (as high as 600 ppm) and could use TC as a sole carbon and energy source. Growth conditions (pH, temperature, and oxygen requirement) for TC-tolerant bacteria were optimized for higher TC remediation capability from water sources. The plant (roots and shoots) and bacterial species were further characterized for the metabolites produced during the TC degradation process using GC-MS to identify the possible biochemical mechanism involved. Also, the plant root zone was screened for metabolites/enzymes that were secreted during antibiotic degradation and could potentially enhance the degradation process. The root zone was selected for this analysis because this region of the plant has shown a greater capacity for antibiotic degradation compared to the shoot zone. The role of antioxidant enzymes in TC degradation process revealed glutathione-S-transferase (GSTs) as an important group of enzymes in both plant and bacteria potentially involved in TC degradation process. Metabolomics results also suggest potential GST activity in the TC remediation/ transformation process used by plants. This information could be useful in gaining insights for the application of biological remediation systems for the mitigation of antibiotics from waste-water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thiazolide nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) is composed of a nitrothiazole- ring and a salicylic acid moiety, which are linked together through an amide bond. NTZ exhibits a broad spectrum of activities against a wide range of helminths, protozoa, enteric bacteria, and viruses infecting animals and humans. Since the first synthesis of the drug, a number of derivatives of NTZ have been produced, which are collectively named thiazolides. These are modified versions of NTZ, which include the replacement of the nitro group with bromo-, chloro-, or other functional groups, and the differential positioning of methyl- and methoxy-groups on the salicylate ring. The presence of a nitro group seems to be the prerequisite for activities against anaerobic or microaerophilic parasites and bacteria. Intracellular parasites and viruses, however, are susceptible to non-nitro-thiazolides with equal or higher effectiveness. Moreover, nitro- and bromo-thiazolides are effective against proliferating mammalian cells. Biochemical and genetic approaches have allowed the identification of respective targets and the molecular basis of resistance formation. Collectively, these studies strongly suggest that NTZ and other thiazolides exhibit multiple mechanisms of action. In microaerophilic bacteria and parasites, the reduction of the nitro group into a toxic intermediate turns out to be the key factor. In proliferating mammalian cells, however, bromo- and nitro-thiazolides trigger apoptosis, which may also explain their activities against intracellular pathogens. The mode of action against helminths may be similar to mammalian cells but has still not been elucidated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Helicobacter pylori colonizes the human stomach, where it causes gastritis that may develop into peptic ulcer disease or cancer when left untreated. Neisseria gonorrhoeae colonizes the urogenital tract and causes the sexually transmitted disease gonorrhea. In contrast, Lactobacillus species are part of the human microbiota, which is the resident microbial community, and are considered to be beneficial for health. The first host cell types that bacteria encounter when they enter the body are epithelial cells, which form the border between the inside and the outside, and macrophages, which are immune cells that engulf unwanted material.       The focus of this thesis has been the interaction between the host and bacteria, aiming to increase our knowledge of the molecular mechanisms that underlie the host responses and their effects on bacterial pathogenicity. Understanding the interactions between bacteria and the host will hopefully enable the development of new strategies for the treatment of infectious disease. In paper I, we investigated the effect of N. gonorrhoeae on the growth factor amphiregulin in cervical epithelial cells and found that the processing and release of amphiregulin changes upon infection. In paper II, we examined the expression of the transcription factor early growth response-1 (EGR1) in epithelial cells during bacterial colonization. We demonstrated that EGR1 is rapidly upregulated by many different bacteria. This upregulation is independent of the pathogenicity, Gram-staining type and level of adherence of the bacteria, but generally requires viable bacteria and contact with the host cell. The induction of EGR1 is mediated primarily by signaling through EGFR, ERK1/2 and β1-integrins. In paper III, we described the interactions of the uncharacterized protein JHP0290, which is secreted by H. pylori, with host cells. JHP0290 is able to bind to several cell types and induces apoptosis and TNF release in macrophages. For both of these responses, signaling through Src family kinases and ERK is essential. Apoptosis is partially mediated by TNF release. Finally, in paper IV, we showed that certain Lactobacillus strains can reduce the colonization of H. pylori on gastric epithelial cells. Lactobacilli decrease the gene expression of SabA and thereby inhibit the binding mediated by this adhesin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Associations between different bacteria and various tumours have been reported in patients for decades. Studies involving characterisation of bacteria within tumour tissues have traditionally been in the context of tumourigenesis as a result of bacterial presence within healthy tissues, and in general, dogma holds that such bacteria are causative agents of malignancy (directly or indirectly). While evidence suggests that this may be the case for certain tumour types and bacterial species, it is plausible that in many cases, clinical observations of bacteria within tumours arise from spontaneous infection of established tumours. Indeed, growth of bacteria specifically within tumours following deliberate systemic administration has been demonstrated for numerous bacterial species at preclinical and clinical levels. We present the available data on links between bacteria and tumours, and propose that besides the few instances in which pathogens are playing a pathogenic role in cancer, in many instances, the prevalent relationship between solid tumours and bacteria is opportunistic rather than causative, and discuss opportunities for exploiting tumour-specific bacterial growth for cancer treatment.