896 resultados para analytical techniques


Relevância:

60.00% 60.00%

Publicador:

Resumo:

After developing field sampling protocols and making a series of consultations with investigators involved in research in CSSS habitat, we determined that vegetationhydrology interactions within this landscape are best sampled at a combination of scales. At the finer scale, we decided to sample at 100 m intervals along transects that cross the range of habitats present, and at the coarser scale, to conduct an extensive survey of vegetation at sites of known sparrow density dispersed throughout the range of the CSSS. We initiated sampling in the first week of January 2003 and continued it through the last week of May. During this period, we established 6 transects, one in each CSSS subpopulation, completed topographic survey along the Transects A, C, D, and F, and sampled herb and shrub stratum vegetation, soil depth and periphyton along Transects A, and at 179 census points. We also conducted topographic surveys and completed vegetation and soil depth sampling along two of five transects used by ENP researchers for monitoring long-term vegetation change in Taylor Slough. We analyzed the data by summarizing the compositional and structural measures and by using cluster analysis, ordination, weighted averaging regression, and weighted averaging calibration. The mean elevation of transects decreased from north to south, and Transect F had greater variation than other transects. We identified eight vegetation assemblages that can be grouped into two broad categories, ‘wet prairie’ and ‘marsh’. In the 2003 survey, wet prairies were most dominant in the northeastern sub-populations, and had shorter inferred-hydroperiod, higher species richness and shallower soils than marshes, which were common in Subpopulations A, D, and the southernmost regions of Sub-population B. Most of the sites at which birds were observed during 2001 or 2002 had an inferred-hydroperiod of 120-150 days, while no birds were observed at sites with an inferred-hydroperiod less than 120 days or more than 300 days. Management-induced water level changes in Taylor Slought during the 1980’s and 1990’s appeared to elicit parallel changes in vegetation. The results described in detail in the following pages serve as a basis for evaluating and modifying, if necessary, the sampling design and analytical techniques to be used in the next three years of the project.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Existing instrumental techniques must be adaptable to the analysis of novel explosives if science is to keep up with the practices of terrorists and criminals. The focus of this work has been the development of analytical techniques for the analysis of two types of novel explosives: ascorbic acid-based propellants, and improvised mixtures of concentrated hydrogen peroxide/fuel. In recent years, the use of these explosives in improvised explosive devices (IEDs) has increased. It is therefore important to develop methods which permit the identification of the nature of the original explosive from post-blast residues. Ascorbic acid-based propellants are low explosives which employ an ascorbic acid fuel source with a nitrate/perchlorate oxidizer. A method which utilized ion chromatography with indirect photometric detection was optimized for the analysis of intact propellants. Post-burn and post-blast residues if these propellants were analyzed. It was determined that the ascorbic acid fuel and nitrate oxidizer could be detected in intact propellants, as well as in the post-burn and post-blast residues. Degradation products of the nitrate and perchlorate oxidizers were also detected. With a quadrupole time-of-flight mass spectrometer (QToFMS), exact mass measurements are possible. When an HPLC instrument is coupled to a QToFMS, the combination of retention time with accurate mass measurements, mass spectral fragmentation information, and isotopic abundance patterns allows for the unequivocal identification of a target analyte. An optimized HPLC-ESI-QToFMS method was applied to the analysis of ascorbic acid-based propellants. Exact mass measurements were collected for the fuel and oxidizer anions, and their degradation products. Ascorbic acid was detected in the intact samples and half of the propellants subjected to open burning; the intact fuel molecule was not detected in any of the post-blast residue. Two methods were optimized for the analysis of trace levels of hydrogen peroxide: HPLC with fluorescence detection (HPLC-FD), and HPLC with electrochemical detection (HPLC-ED). Both techniques were extremely selective for hydrogen peroxide. Both methods were applied to the analysis of post-blast debris from improvised mixtures of concentrated hydrogen peroxide/fuel; hydrogen peroxide was detected on variety of substrates. Hydrogen peroxide was detected in the post-blast residues of the improvised explosives TATP and HMTD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smokeless powder additives are usually detected by their extraction from post-blast residues or unburned powder particles followed by analysis using chromatographic techniques. This work presents the first comprehensive study of the detection of the volatile and semi-volatile additives of smokeless powders using solid phase microextraction (SPME) as a sampling and pre-concentration technique. Seventy smokeless powders were studied using laboratory based chromatography techniques and a field deployable ion mobility spectrometer (IMS). The detection of diphenylamine, ethyl and methyl centralite, 2,4-dinitrotoluene, diethyl and dibutyl phthalate by IMS to associate the presence of these compounds to smokeless powders is also reported for the first time. A previously reported SPME-IMS analytical approach facilitates rapid sub-nanogram detection of the vapor phase components of smokeless powders. A mass calibration procedure for the analytical techniques used in this study was developed. Precise and accurate mass delivery of analytes in picoliter volumes was achieved using a drop-on-demand inkjet printing method. Absolute mass detection limits determined using this method for the various analytes of interest ranged between 0.03 - 0.8 ng for the GC-MS and between 0.03 - 2 ng for the IMS. Mass response graphs generated for different detection techniques help in the determination of mass extracted from the headspace of each smokeless powder. The analyte mass present in the vapor phase was sufficient for a SPME fiber to extract most analytes at amounts above the detection limits of both chromatographic techniques and the ion mobility spectrometer. Analysis of the large number of smokeless powders revealed that diphenylamine was present in the headspace of 96% of the powders. Ethyl centralite was detected in 47% of the powders and 8% of the powders had methyl centralite available for detection from the headspace sampling of the powders by SPME. Nitroglycerin was the dominant peak present in the headspace of the double-based powders. 2,4-dinitrotoluene which is another important headspace component was detected in 44% of the powders. The powders therefore have more than one headspace component and the detection of a combination of these compounds is achievable by SPME-IMS leading to an association to the presence of smokeless powders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surfactants are versatile organic compounds that have, in a single molecule, double chemical affinity. The surfactant molecule is composed by a hy drophobic tail group, a hydrocarbon chain (linear, branched, or mixed), and by a hydrophilic head group, which contains polar groups that makes it able to be applied in the organophilization process of natural clays. Microemulsions are microheterogeneous b lends composed by: a surfactant, an oily phase (non - polar solvent), an aqueous phase, and, sometimes, a co - surfactant (short - chain alcohol). They are systems with thermodynamic stability, transparent, and have high solubility power. Vermiculite is a clay m ineral with an expandable crystalline structure that has high cation exchange capacity. In this work vermiculite was used to obtain organoclays. The ionic surfactants dodecyl ammonium chlori de (DDAC) and cetyltrimethylammonium bromide (C 16 TAB) were used in the organophilization process. They were used as surfactant aqueous solutions and, for DDAC, as a microemulsion system. The organoclays were used to promote the separation of binary mixtures of xylene isomers (ortho - and meta - xylene). Dif ferent analytical techniques were used to characterize microemulsion systems and also the nanoclays. It was produced a water - rich microemulsion system with 0.92 nm droplet average diameter. The vermiculite used in this work has a cationic exchange capacity of 172 meq/100g and magnesium as main cation (24.25%). The basal spacing of natural vermiculite and organo - vermiculites were obtained by X - ray Diffraction technique. The basal spacing was 1.48nm for natural vermiculite, 4.01nm for CTAB - vermiculite (CTAB 4 ) , and 3.03nm for DDAC - vermiculite (DDAC M1A), that proves the intercalation process. Separation tests were carried out in glass columns using three binary mixtures of xylene (ortho - xylene and meta - xylene). The results showed that the organovermiculite pre sented an enhanced chemical affinity by the mixture of hydrocarbons, when compared with the natural vermiculite, and also its preference by ortho - xylene. A factorial experimental design 2 2 with triplicate at the central point was used to optimize the xylen e separation process. The experimental design revealed that the initial concentration of isomers in the mixture and the mass of organovermiculite were the significant factors for an improved separation of isomers. In the experiments carried out using a bin ary mixture of ortho - xylene and meta - xylene (2:1), after its percolating through the organovermiculite bed (DDAC M1), it was observed the preference of the organoclay by the ortho - xylene isomer, which was retained in greater quantity than the meta - xylene o ne. At the end of the treatment, it was obtained a final concentration in meta - xylene of 47.52%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Produced water is a major problem associated with the crude oil extraction activity. The monitoring of the levels of metals in the waste is constant and requires the use of sensitive analytical techniques. However, the determination of trace elements can often require a pre-concentration step. The objective of this study was to develop a simple and rapid analytical method for the extraction and pre-concentration based on extraction phenomenon cloud point for the determination of Cd, Pb and Tl in produced water samples by spectrometry of high resolution Absorption source continues and atomization graphite furnace. The Box Behnken design was used to obtain the optimal condition of extraction of analytes. The factors were evaluated: concentration of complexing agent (o,o-dietilditilfosfato ammonium, DDTP), the concentration of hydrochloric acid and concentration of surfactant (Triton X -114). The optimal condition obtained through extraction was: 0,6% m v-1 DDTP, HCl 0,3 mol L-1 and 0,2% m v-1 of Triton X - 114 for Pb; 0,7% m v-1 DDTP, HCl 0,8 mol L-1 and 0,2% m v-1 Triton X-114 for Cd. For Tl was evidenced that best extraction condition occurs with no DDTP, the extraction conditions were HCl 1,0 mol L-1 e 1,0% m v-1 de Triton X - 114. The limits of detection for the proposed method were 0,005 µg L-1 , 0,03 µg L-1 and 0,09 µg L-1 to Cd, Pb and Tl, Respectively. Enrichment factors Were greater than 10 times. The method was applied to the water produced in the Potiguar basin, and addition and recovery tests were performed, and values were between 81% and 120%. The precision was expressed with relative standard deviation (RSD) is less than 5%

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.

The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.

In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.

I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.

Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Precision medicine is an emerging approach to disease treatment and prevention that considers variability in patient genes, environment, and lifestyle. However, little has been written about how such research impacts emergency care. Recent advances in analytical techniques have made it possible to characterize patients in a more comprehensive and sophisticated fashion at the molecular level, promising highly individualized diagnosis and treatment. Among these techniques are various systematic molecular phenotyping analyses (e.g., genomics, transcriptomics, proteomics, and metabolomics). Although a number of emergency physicians use such techniques in their research, widespread discussion of these approaches has been lacking in the emergency care literature and many emergency physicians may be unfamiliar with them. In this article, we briefly review the underpinnings of such studies, note how they already impact acute care, discuss areas in which they might soon be applied, and identify challenges in translation to the emergency department (ED). While such techniques hold much promise, it is unclear whether the obstacles to translating their findings to the ED will be overcome in the near future. Such obstacles include validation, cost, turnaround time, user interface, decision support, standardization, and adoption by end-users.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioscience subjects require a significant amount of training in laboratory techniques to produce highly skilled science graduates. Many techniques which are currently used in diagnostic, research and industrial laboratories require expensive equipment for single users; examples of which include next generation sequencing, quantitative PCR, mass spectrometry and other analytical techniques. The cost of the machines, reagents and limited access frequently preclude undergraduate students from using such cutting edge techniques. In addition to cost and availability, the time taken for analytical runs on equipment such as High Performance Liquid Chromatography (HPLC) does not necessarily fit with the limitations of timetabling. Understanding the theory underlying these techniques without the accompanying practical classes can be unexciting for students. One alternative from wet laboratory provision is to use virtual simulations of such practical which enable students to see the machines and interact with them to generate data. The Faculty of Science and Technology at the University of Westminster has provided all second and third year undergraduate students with iPads so that these students all have access to a mobile device to assist with learning. We have purchased licences from Labster to access a range of virtual laboratory simulations. These virtual laboratories are fully equipped and require student responses to multiple answer questions in order to progress through the experiment. In a pilot study to look at the feasibility of the Labster virtual laboratory simulations with the iPad devices; second year Biological Science students (n=36) worked through the Labster HPLC simulation on iPads. The virtual HPLC simulation enabled students to optimise the conditions for the separation of drugs. Answers to Multiple choice questions were necessary to progress through the simulation, these focussed on the underlying principles of the HPLC technique. Following the virtual laboratory simulation students went to a real HPLC in the analytical suite in order to separate of asprin, caffeine and paracetamol. In a survey 100% of students (n=36) in this cohort agreed that the Labster virtual simulation had helped them to understand HPLC. In free text responses one student commented that "The terminology is very clear and I enjoyed using Labster very much”. One member of staff commented that “there was a very good knowledge interaction with the virtual practical”.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mangroves are diverse group of trees, palms, shrubs, and ferns that share a common ability to live in waterlogged saline soils exposed to regular flooding, and are highly specialised plants which have developed unusual adaptations to the unique environmental conditions. They are sites of accumulation and preservation of both allochthonous and autochthonous organic matter owing to their strategic loction at the interface between land and sea and prevailing reducing environment. They are among the most productive ecosystems and are efficient carbon sinks with most of the carbon stored in sediments.Mangrove ecosystems play a significant role in global carbon cycle and hence the knowledge on the processes controlling the delivery of organic matter to coastal sediments, and how these signatures are preserved in the sediment is a prerequisite for the understanding of biogeochemical cycles. The evaluation of nature and sources of organic matter can be accomplished by the determination of biochemical constituents like carbohydrates, proteins and lipids. When characterised at molecular level, lipids provide valuable information about the sources of organic matter, even though they account only small fraction of organic matter. They are useful for the paleo-environmental reconstruction because of their low reactivity, high preservation potential and high source specificity relative to other organic class of compounds. The application of recent analytical techniques has produced a wealth of useful information but has also indicated the gaps in our knowledge on cycling of organic matter in the coastal ecosystems. The quantity and quality of organic matter preserved in sediments vary depending up on the nature of material delivered to the sediment and on the depositional environment. The input from both autochthonous and allochthonous sources sharpens the complexity of biogeochemistry of mangrove ecosystem and hence bulk sedimentary parameters are not completely successful in evaluating the sources of organic matter in mangrove sediments. An effective tool for the source characterisation of organic matter in coastal ecosystems is biomarker approach. Biomarkers are chemical "signatures" present in environmental samples whose structural information can be linked to its biological precursor. The usefulness of molecular biomarkers depends on high taxonomic specificity, potential for preservation, recalcitrant against geochemical changes, easily analysable in environmental samples and should have a limited number of well-defined sources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nucleic acids play key roles in the storage and processing of genetic information, as well as in the regulation of cellular processes. Consequently, they represent attractive targets for drugs against gene-related diseases. On the other hand, synthetic oligonucleotide analogues have found application as chemotherapeutic agents targeting cellular DNA and RNA. The development of effective nucleic acid-based chemotherapeutic strategies requires adequate analytical techniques capable of providing detailed information about the nucleotide sequences, the presence of structural modifications, the formation of higher-order structures, as well as the interaction of nucleic acids with other cellular components and chemotherapeutic agents. Due to the impressive technical and methodological developments of the past years, tandem mass spectrometry has evolved to one of the most powerful tools supporting research related to nucleic acids. This review covers the literature of the past decade devoted to the tandem mass spectrometric investigation of nucleic acids, with the main focus on the fundamental mechanistic aspects governing the gas-phase dissociation of DNA, RNA, modified oligonucleotide analogues, and their adducts with metal ions. Additionally, recent findings on the elucidation of nucleic acid higher-order structures by tandem mass spectrometry are reviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The red deer (Cervus elaphus) is currently one of the most widespread and abundant wild ungulates in the Iberian Peninsula and is extremely important both ecologically, as a key species for the functioning of the ecosystems, and economically, as a major game species. In Iberia, red deer populations are subjected to different management systems that may affect the physical condition of the individuals, with further consequences for population dynamics. Studies investigating the effects of management practices and environmental conditions on the performance of red deer are still rare regarding Mediterranean ecosystems. Much of the knowledge concerning the ecology of red deer and the impact of management on its physical condition is based on studies conducted in northern and central regions of Europe, where climatological features and management practices differ from those observed in the Mediterranean areas of Iberia. Studies on a biogeographical scale can provide important insights into the relationships between species and a particular environment and contribute to the development of more targeted and appropriate management practices. The optimisation of sampling procedures and the fine-tuning of pre-existing analytical techniques are also fundamental to a more cost-effective monitoring and, therefore, are of enormous value to wildlife managers. In this context, the main aims of this thesis were: 1) to optimise the procedures used to assess the physical condition of red deer; and 2) to identify relevant management and environmental factors affecting the nutritional condition and stress physiology of red deer in the Mediterranean ecosystems of Iberia, as well as any potential interactions between those factors. Two studies with a methodological focus, presented in the first part of the thesis, demonstrated that the physical condition of red deer can be evaluated more simply, using more cost- and time-effective procedures than those traditionally used: i) it was shown that only one kidney and its associated fat is enough to assess nutritional condition in red deer; and ii) the feasibility of using near infrared spectroscopy to predict the concentrations of stress hormone metabolites was demonstrated using faeces of red deer for the first time. Subsequently, two large-scale observational studies, conducted in representative red deer populations found in Mediterranean Iberia, highlighted the importance of considering seasonal environmental variations and variables related to hunting management practices to better understand the nutritional and physiological ecology of red deer. High population densities had adverse effects on the nutritional condition of the deer and were associated with increased stress levels in natural populations without supplementary feeding. Massive hunting events involving the use of hounds were also identified as a potential source of chronic stress in red deer. The research presented in this thesis has clear implications regarding the management and monitoring of red deer populations in Mediterranean environments and is intended to help wildlife managers to implement more effective monitoring programmes and sustainable management practices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last thirty years, the emergence and progression of biologging technology has led to great advances in marine predator ecology. Large databases of location and dive observations from biologging devices have been compiled for an increasing number of diving predator species (such as pinnipeds, sea turtles, seabirds and cetaceans), enabling complex questions about animal activity budgets and habitat use to be addressed. Central to answering these questions is our ability to correctly identify and quantify the frequency of essential behaviours, such as foraging. Despite technological advances that have increased the quality and resolution of location and dive data, accurately interpreting behaviour from such data remains a challenge, and analytical methods are only beginning to unlock the full potential of existing datasets. This review evaluates both traditional and emerging methods and presents a starting platform of options for future studies of marine predator foraging ecology, particularly from location and two-dimensional (time-depth) dive data. We outline the different devices and data types available, discuss the limitations and advantages of commonly-used analytical techniques, and highlight key areas for future research. We focus our review on pinnipeds - one of the most studied taxa of marine predators - but offer insights that will be applicable to other air-breathing marine predator tracking studies. We highlight that traditionally-used methods for inferring foraging from location and dive data, such as first-passage time and dive shape analysis, have important caveats and limitations depending on the nature of the data and the research question. We suggest that more holistic statistical techniques, such as state-space models, which can synthesise multiple track, dive and environmental metrics whilst simultaneously accounting for measurement error, offer more robust alternatives. Finally, we identify a need for more research to elucidate the role of physical oceanography, device effects, study animal selection, and developmental stages in predator behaviour and data interpretation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nos dias de hoje a contaminação dos solos e águas subterrâneas com pesticidas através da agricultura tornou-se um problema. Problema este, considerado ainda maior nas áreas onde o abastecimento de água potável é quase totalmente à base de água subterrânea, causando deste modo risco para a saúde humana devido à exposição directa de possíveis resíduos de pesticidas na água potável. É certo que a persistência dos pesticidas no solo é importante para obter um bom controlo sob as ervas daninhas durante a sua época de crescimento, contudo o uso desses pesticidas contamina não só o solo como as águas superficiais. As questões acerca do uso de pesticidas na actualidade continuarão a persistir, uma vez que existem muitos factores e características inerentes a este processo que necessitam de ser abordadas e mais importante que isso estudadas, como por exemplo a sua degradação e toxicidade. Neste trabalho efectuou-se o encapsulamento de pesticidas em moléculas de β – ciclodextrina (β-CD). O que se pretende com este encapsulamento, é aumentar a hidrofilicidade do pesticida de forma a garantir que este persista o tempo suficiente permitindo um bom controlo das ervas daninhas, tendo sempre em conta as preocupações inerentes ao uso dos pesticidas, como por exemplo a dificuldade de biodegradação. O estudo centrou-se em torno de dois dos pesticidas mais utilizados em Portugal: MCPA e Bentazona. Estes herbicidas foram encapsulados individualmente na β-CD formando assim complexos, mais solúveis e eventualmente mais estáveis quimicamente garantindo uma redução dos efeitos dos pesticidas no meio ambiente. Este estudo foi dividido essencialmente em duas partes: a síntese e caracterização dos complexos pesticida-β-CD e posteriormente a avaliação da estabilidade química em solução aquosa e da solubilidade dos complexos formados. A utilização de diversas técnicas analíticas nomeadamente DSC, FTIR, Espectrofotometria de UV, HPLC e Electroquímica permitiram concluir que o pesticida MCPA encapsula pela acção da β-CD aquando do complexo formado em solução etanólica e numa proporção estequiométrica MCPA:β-CD de 1:2 respectivamente. Obteve-se para as várias soluções estudadas, todas elas com concentrações diferentes de β-CD, uma constante de estabilidade de 102,4. No caso da Bentazona, os resultados preliminares obtidos indiciam claramente a formação de um complexo com a β-CD para o complexo formado em solução etanólica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.