955 resultados para analytical methods
Resumo:
Sparfloxacin, a difluorquinolone derivative, is a potent antibacterial agent active against a wide range of gram-positive and gram-negative organisms including Streptococcus pneumoniae, Staphylococcus aureus, methicillin resistant S. aureus, Legionella spp, Mycoplasma spp; Chlamydia spp. and Mycobacteria. A drawback of fluorquinolones is their photoreactivity. Sparfloxacin has been studied in terms of therapeutic activities. However, few reports about analytical methods of sparfloxacin are available in the literature. The aim of this study was to determine cytotoxic effects, using sparfloxacin reference substance (SPAX-SR), sparfloxacin tablets (SPAX-COMP) and sparfloxacin tablets submitted UV light during 36 hours (SPAX-COMP.36) solution, and two isolated products (7 and 9) of SPAX-SR submitted UV-C light, in concentrations of 31.25, 62.5, 125 and 250 μg/mL by in vitro mononuclear humane culture cells. The results, statistically analyzed by Teste de Tukey, showed SPAX, SPAX-COMP and SPAX-COMP.36 solutions could reduce the cells number in these conditions. These results could not be observed for products 7 or 9. These results can suggest that isolated product can be less cytotoxic than SPAX-SR, is method can also be used to identified products degradation of sparfloxacin in stability study. However, the low activity achieved with sparfloxacin submitted to UV-light is a source of concern and requires further investigation about its photodegradation mechanism.
Resumo:
This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.
Resumo:
Methods were developed for the analysis of acetonitrile and its metabolite cyanide in the blood of rats exposed to acetonitrile. Acetonitrile was analyzed by the headspace technique coupled to gas chromatography with detection by flame ionization, and cyanide was analyzed by high-performance liquid chromatography with fluorescence detection (λ ex = 418 nm and λ em = 460 nm) after derivatization of the ion with naphthalene 2,3-dicarboxyaldehyde and taurine. The quantitation limits of the methods for the analysis of acetonitrile and cyanide were 4.875 μg/mL and 0.025 μg/mL, respectively. The coefficients of variation of 10% or less obtained for intra- and interassay precision indicate the precision of these analytical methods and the systematic errors, all less than 5%, indicate that the methods are quite accurate. The methods were applied to an experimental study after the animals received acetonitrile at the doses of 2 mmol/kg or 5 mmol/kg.
Resumo:
Sparfloxacin, a third generation fluoroquinolone derivative, is a potent antibacterial agent active against a wide range of Gram-positive and Gram-negative organisms including Streptococcus pneuinoniae, Staphylococcus aureus, methicillin resistant S. aureus, Legionella spp., Mycoplasina spp., Chlamydia spp. and Mycobacterium spp. A drawback of fluoroquinolones is their photoreactivity. Sparfloxacin has been studied in terms of therapeutic activities. However, there are few published of analytical methods being applied to sparfloxacin. The aim in this study was to determine the photodegradation products of sparfloxacin, when submitted to UV light, and to characterize two of these products, designated SPAX-PDP1 and SPAX-PDP2. An accelerated study of stability in methanol solution was carried out by exposing a solution of sparfloxacin to UV light (peak wavelength 290 nm) for 36 hours at room temperature. The products were analyzed by NMR spectrophotometry, IR spectrometry and mass spectrophotometry. The results suggest that the products isolated here could be used to estimate the degradation of sparfloxacin in a stability study. However, the low activity exhibited by UV-irradiated sparfloxacin is a source of concern that demands further investigation of the mechanism of its photodegradation mechanism.
Resumo:
Natural products have been utilized by humans since ancient times and the relief and cure of their diseases was the first purpose for using natural products in medicine. The history of the oriental and occidental civilizations is very rich in examples of the utilization of natural products in medicine and health care. Chinese traditional medicine is one of the most important examples of how natural products can be efficient in the treatment of diseases, and it points to the importance of scientific research on natural products, concerning the discovery of new active chemical entities. The complexity, chemical diversity and biological properties of natural products always fascinated people, and during the last 200 years, this led to the discovery of important new drugs. In the last 30 years, the development of new bioassay techniques, biotechnology methods, bio-guided phytochemical studies, automated high throughput screening and high performance analytical methods, have introduced new concepts and possibilities of rational drug design and drug discovery. In this context, natural products have played an important and decisive role in the development of modern medicinal chemistry.
Resumo:
Compositional data from 152 stingless bee (Meliponini) honey samples were compiled from studies since 1964, and evaluated to propose a quality standard for this product. Since stingless bee honey has a different composition than Apis mellifera honey, some physicochemical parameters are presented according to stingless bee species. The entomological origin of the honey was known for 17 species of Meliponini from Brazil, one from Costa Rica, six from Mexico, 27 from Panama, one from Surinam, two from Trinidad & Tobago, and seven from Venezuela, most from the genus Melipona. The results varied as follows: moisture (19.9-41.9g/100g), pH (3.15-4.66), free acidity (5.9-109.0meq/Kg), ash (0.01-1.18g/100g), diastase activity (0.9-23.0DN), electrical conductivity (0.49-8.77mS/cm), HMF (0.4-78.4mg/Kg), invertase activity (19.8-90.1IU), nitrogen (14.34-144.00mg/100g), reducing sugars (58.0-75.7g/100g) and sucrose (1.1-4.8g/100g). Moisture content of stingless bee honey is generally higher than the 20% maximum established for A. mellifera honey. Guidelines for further contributions would help make the physicochemical database of meliponine honey more objective, in order to use such data to set quality standards. Pollen analysis should be directed towards the recognition of unifloral honeys produced by stingless bees, in order to obtain standard products from botanical species. A honey quality control campaign directed to both stingless beekeepers and stingless bee honey hunters is needed, as is harmonization of analytical methods. © 2007 Asociación Interciencia.
Resumo:
Ketoconazole is a synthetic broad-spectrum oral and topical antifungal drug derived from imidazole, effective in the treatment of superficial mycoses and systemic infections. In this study we have tested several methods to analyze ketoconazole in various pharmaceutical products containing this drug, employing techniques such as UV and IR spectrophotometry and thermal analysis. The results showed that UV spectrophotometry is a fast, practical and economical method and indicated that other methods, such as IR spectrophotometry and thermal analysis, could be good alternative methods for ketoconazole analysis in certain pharmaceutical forms.
Resumo:
The change of chemical properties during storage of 12 fertilized bagged peats of different origins at high temperature was investigated. The average values for N, soluble salts and EC decreased significantly, whereas the pH as well as P and K contents changed only slightly. Differences in N were observed between the peats. The contents of CAT soluble N in the two dredged frozen black peats did not change during storage. However, a decrease in N was found when water extraction was used. In the case of the 10 white peats the loss of N differed considerably, but it was independent of the method of peat harvest. The N decrease resulted mainly from reduced levels of NO3-N. Substances damaging to plant growth do not seem to have developed during storage as shown by trials on the germination and the growth of Chinese cabbage. There were no significant differences between the peats, whether stored or not.
Resumo:
A simple procedure for the sequential determination of Cd, Cu and Pb in tea leaves by slurry introduction to thermospray flame furnace atomic absorption spectrometry was developed. Detection limits were 0.05 mg kg-1 for Cd, 2.1 mg kg-1 for Cu and 0.68 mg kg-1 for Pb using 0.67 % (m/v) slurries (100 mg/15 mL). © 2013 Springer Science+Business Media New York.
Resumo:
The use of chemical preservative compounds is common in the food products industry. Caramel color is the most usual additive used in beverages, desserts, and breads worldwide. During its fabrication process, 2- and 4-methylimidazole (MeI), highly carcinogenic compounds, are generated. In these cases, the development of reliable analytical methods for the monitoring of undesirable compounds is necessary. The primary procedure for the analysis of 2- and 4-MeI is using LC- or GC-MS techniques. These procedures are time-consuming and require large amounts of organic solvents and several pretreatment steps. This prevents the routine use of this procedure. This paper describes a rapid, efficient, and simple method using capillary electrophoresis (CE) for the separation and determination of 2- and 4-MeI in caramel colors. The analyses were performed using a 75 μm i.d. uncoated fused-silica capillary with an effective length of 40 cm and a running electrolyte consisting of 160 mmol L-1 phosphate plus 30% acetonitrile. The pH was adjusted to 2.5 with triethylamine. The analytes were separated within 6 min at a voltage of 20 kV. Method validation revealed good repeatability of both migration time (<0.8% RSD) and peak area (<2% RSD). Analytical curves for 2- and 4-MeI were linear in the 0.4-40 mg L-1 concentration interval. Detection limits were 0.16 mg L-1 for 4-MeI and 0.22 mg L-1 for 2-MeI. The extraction recoveries were satisfactory. The developed method showed many advantages when compared to the previously used method. © 2013 American Chemical Society.
Resumo:
A method based on capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C4D) for determination of two important phosphodiesterase type-5 inhibitors (sildenafil and vardenafil) is introduced. The background electrolyte (BGE) consisted of an aqueous solution of 500 mmol L-1 acetic acid, and the capillary was previously treated with polybrene solution to prevent cationic analytes from adsorbing onto the inner surface. Although the analytes migrate in the counter flow, the total time is short. An instrument with two C4D detectors allowed a seamless transition from a fast method (less than one minute) but of low-efficiency using the first detector to a more efficient method using the second detector. The analysis of commercial tablets showed no significant difference between CE-C4D and HPLC methods. Conductivity detection is a well-known low selectivity detection scheme, which in conjunction with the high mobility of the co-ion in the BGE (hydroxonium) allows one to predict that other cationic analogues of sildenafil can also be detected. This is an interesting feature given the increasing number of compounds in this class. © 2013 The Royal Society of Chemistry.
Sintering of porous alumina obtained by biotemplate fibers for low thermal conductivity applications
Resumo:
In this research report, a sintering process of porous ceramic materials based on Al2O3 was employed using a method where a cation precursor solution is embedded in an organic fibrous cotton matrix. For porous green bodies, the precursor solution and cotton were annealed at temperatures in the range of 100-1600°C using scanning electron microscopy (SEM) and thermogravimetric (TG) analysis to obtain a porous body formation and disposal process containing organic fibers and precursor solution. In a structure consisting of open pores and interconnected nanometric grains, despite the low porosity of around 40% (calculated geometrically), nitrogen physisorption determined a specific surface area of 14m2/g, which shows much sintering of porous bodies. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analytical methods revealed a predominant amount of α-Al2O3 in the sintered samples. Thermal properties of the sintered Al2O3 fibers were obtained by using the Laser Flash which resulted in the lower thermal conductivity obtained by α-Al2O3 and therefore improved its potential use as an insulating material. © 2012 Elsevier Ltd.
Resumo:
Darunavir is a protease inhibitor used in the treatment of HIV infection. It is a pillar of the drug cocktail for patients diagnosed with the virus. Quality control in the pharmaceutical industry, to verify the content of active substance and study the physicochemical characteristics of the drug, is essential to ensure final product quality. Until now, standardized methods for the analysis of darunavir have not been available in official compendia. This justifies new research, to develop and validate analytical methods, as well as physicochemical and pharmaceutical analysis for this drug, both as a raw material and a finished product. Thus, in this study, (a) the average weight of darunavir tablets and (b) the melting point of the pure drug were determined, and the following analytical techniques were performed: (c) thin-layer chromatography, (d) ultraviolet spectroscopy, (e) infrared spectroscopy and (f) high performance liquid chromatography. By developing the above techniques, it is possible to make a qualitative assessment of the quality of darunavir tablets.
Resumo:
Introduction Jatropha gossypifolia has been used quite extensively by traditional medicine for the treatment of several diseases in South America and Africa. This medicinal plant has therapeutic potential as a phytomedicine and therefore the establishment of innovative analytical methods to characterise their active components is crucial to the future development of a quality product. Objective To enhance the chromatographic resolution of HPLC-UV-diode-array detector (DAD) experiments applying chemometric tools. Methods Crude leave extracts from J. gossypifolia were analysed by HPLC-DAD. A chromatographic band deconvolution method was designed and applied using interval multivariate curve resolution by alternating least squares (MCR-ALS). Results The MCR-ALS method allowed the deconvolution from up to 117% more bands, compared with the original HPLC-DAD experiments, even in regions where the UV spectra showed high similarity. The method assisted in the dereplication of three C-glycosylflavones isomers: vitexin/isovitexin, orientin/homorientin and schaftoside/isoschaftoside. Conclusion The MCR-ALS method is shown to be a powerful tool to solve problems of chromatographic band overlapping from complex mixtures such as natural crude samples. Copyright © 2013 John Wiley & Sons, Ltd. Extracts from J. gossypifolia were analyzed by HPLC-DAD and, dereplicated applying MCR-ALS. The method assisted in the detection of three C-glycosylflavones isomers: vitexin/isovitexin, orientin/homorientin and schaftoside/isoschaftoside. The application of MCR-ALS allowed solving problems of chromatographic band overlapping from complex mixtures such as natural crude samples. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Vegetables were analyzed for total N-nitrosamines (NAs) and the influence of disinfection processes was assessed. Differences in NAs found in cabbage, spinach, and broccoli were determined by square wave voltammetry using a boron-doped diamond electrode. Analysis of samples showed that all samples contained detectable levels of NAs but the results indicated that organic contained less than conventionally grown products. The sum of the total NAs was higher in the cabbage samples, ranging between 2.8-3.1 ppb and lower in broccoli samples at 0.2-1.1 ppb. The method described is simple, rapid, selective, and sensitive. The results suggested that the disinfection process affects the level of NAs, in this manner affecting the level of human exposure to NAs. © 2012 Springer Science+Business Media New York.