941 resultados para acidulated phosphate fluoride
Resumo:
研究了掺铒氟(卤)磷碲酸盐玻璃的吸收光谱和上转换荧光光谱,探讨了Er^2+在氟(卤)磷碲酸盐玻璃中的上转换发光机理.在975nm激光二极管抽运下产生强烈的上转换红光及绿光。且红光的发光强度要远远大于绿光.以PbCl2取代PbF2后,红光的发光强度下降,而绿光却没有明显变化;以ZnCl2取代ZnF2达5mol%时,红光和绿光的发光强度均明显增大.
Resumo:
The optical loss coefficient at 1053-nm wavelength, influenced by Fe ions in N31-type Nd-doped phosphate laser glass, was determined precisely and analyzed in detail. It is found that the optical loss coefficient per unit of Fe concentration (cm^(-1)/ppmw) increases with Fe concentration in the range of 0---300 ppmw, but it approaches a constant as the Fe concentration is larger than 300 ppmw. Such a concentration effect is due to a shift in the redox equilibrium between Fe3+ and Fe2+ ions in the glass. The effect of oxygen pressure, temperature, and variable valence states of other metal ions in glass samples on the optical loss is also discussed.
Resumo:
The integrated absorption cross section Sigma(abs), I peak emission cross section sigma(cmi), Judd-Ofeld intensity parameters Omega(iota) ( t = 2,4,6), and spontaneous emission probability A(R) of Er3+ ions were determined for Erbium doped alkali and alkaline earth phosphate glasses. It is found the compositional dependence of sigma(emi) 5 almost similar to that of Sigma(abs), which is determined by the sum, of Omega(1) (3 Omega(2) + 10 Omega(4) + 21 Omega(6)). In addition, the compositional dependence of Omega(1) was studied in these glass systems. As a result, compared with. Omega(4) and Omega(6) the Omega(2) has a stronger compositional dependence on the ionic radius and content of modifers. The covalency of Er-O bonds in phosphate glass is weaker than that in silicate glass, germanate glass, aluminate glass, and tellurate glass, since Omega(6) of phosphate glass is relatively large. A(R) is affected by the covalency of the Er3+ ion sites and corresponds to the Omega(6) value.
Resumo:
Optical spectroscopic properties of Er3+-doped alkaline-earth metal modified fluoropho sphate glasses have been investigated experimentally for developing broadband fiber and planar amplifiers. The results show a strong correlation between the alkaline-earth metal content and the spectroscopic parameters such as absorption and emission cross sections, full widths at half-maximum and Judd-Ofelt intensity parameters. It is found that strontium ions could have more influences on the Judd-Ofelt intensity parameters and the absorption and emission cross sections than other alkaline-earth metal ions such as Mg2+, Ca2+, Ba2+. The sample containing 23 mol% strontium fluoride exhibits the maximum emission cross section of 7.58 x 10(-21) cm(2), the broadest full width at half-maximum of 65 nm and the longer lifetime of 8.6 ms among the alkaline-earth metal modified fluorophosphates glasses studied. The Judd-Ofelt intensity parameter Omega(6)s, the emission cross sections and the full widths at half-maximum in the Er3+-doped fluorophosphate glasses studied are larger than in the silicate and phosphate glasses.
Resumo:
研究了掺铒TeO2-ZnO-PbCl2碲酸盐基氧卤玻璃在977nm激光二极管抽运下的发光和上转换发光特性,结果发现除红外1.53μm^4I13.2→^4I15/2发光外(荧光半高宽高达69nm),该玻璃还存在很强的^2H11/2→^4I15/2(527nm),^4S3/2→^4I15/2(549nm)和^4R9/2→^4I15/2(666nm)可见上转换发光.应用Judd-Ofelt理论计算得到玻璃强度参数Ω1(t=2,4,6)分别为Ω2=5.87×10^20cm^2,Ω4=2.08×10^2-cm^2,
Resumo:
A novel Vb(3+)-Er-(3+) codoped phosphate glass for high power flashlamp pumping and high repetition rate laser at 1.54 mu m, designated EAT5-2, is developed. The weight-loss rate of is 1.3 x 10(-5) gcm(-2) h(-1) in boiling water, which is comparable to Kigre's QX-Er glass. Some spectroscopic parameters are analysed by Judd-Ofelt theory and McCumber theory The emission cross section is calculated to be 0.73 x 10(-20) cm(2). The thermo-mechanical properties of EAT5-2 are modified after an ion-exchange chemical strengthening process in a KNO3/NaNO3 molten salt bath. The thresholds for optical damage from the flashlamp pumping are tested on glass rods. A repetition rate of 15 Hz is achieved for chemically strengthened glass. The laser experimental results at. 1.54 mu m from flashlamp pumping are also reported.
Resumo:
This paper reports on the fabrication and characterization of a ridge optical waveguide in an Er3+/Yb3+ co-doped phosphate glass. The He+ ion implantation (at energy of 2.8 MeV) is first applied onto the sample to produce a planar waveguide substrate, and then Ar+ ion beam etching (at energy of 500 eV) is carried out to construct rib stripes on the sample surface that has been deposited by a specially designed photoresist mask. According to a reconstructed refractive index profile of the waveguide cross section, the modal distribution of the waveguide is simulated by applying a computer code based on the beam propagation method, which shows reasonable agreement with the experimentally observed waveguide mode by using the end-face coupling method. Simulation of the incident He ions at 2.8 MeV penetrating into the Er3+/Yb3+ co-doped phosphate glass substrate is also performed to provide helpful information on waveguide formation.
Resumo:
An erbium-doped phosphate glass fibre has been drawn by the rod-in-tube technique in our laboratory. The gain for the Er3+-doped phosphate glass fibre with different pump powers and with different input signal wavelengths is investigated. The 2.2-cm-long fibre, pumped by a single-mode 980-nm fibre-pigtailed laser diode, can provide a net gain per unit length greater than 1.8dB/cm. The pump threshold is about 50 mW at the wavelength of 1534 nm, and below 70 mW at 1550 nm. The gain linewidth of the Er3+-doped phosphate glass fibre is greater than 34 nm and can cover the C band in optical communication networks.
Resumo:
Effect of fluoride ions introduction on structural, OH- content and up-conversion luminescence properties in Er3+-doped heavy metal oxide glasses have been investigated. Structure was investigated, indicating that fluoride has an important influence on the phonon density, maximum phonon energy of host glasses. With increasing fluoride content, the up-conversion luminescence intensity and quantum efficiencies increase notably, which could not be explained only by the maximum phonon energy change of host glasses. Our results show that, with the introduction of PbF2, the decrease of phonon density and OH- content contributes more to the enhanced up-conversion emissions than that of maximum phonon energy. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
High-uniform nanowires with diameters down to 50 nm are directly taper-drawn from bulk glasses. Typical loss of these wires goes down to 0.1 dB/mm for single-mode operation. Favorable photonic properties such as high index for tight optical confinement in tellurite glass nanowires and photoluminescence for active devices in doped fluoride and phosphate glass nanowires are observed. Supporting high-index tellurite nanowires with solid substrates (such as silica glass and MgF2 crystal) and assembling low-loss microcoupler with these wires are also demonstrated. Photonic nanowires demonstrated in this work may open up vast opportunities for making versatile building blocks for future micro- and nanoscale photonic circuits and components. (c) 2006 Optical Society of America.
Resumo:
The thermal stability and structure of RF-RF2-AIF(3)-Al(PO3)(3) fluorophosphate glasses were investigated. Analyses of infrared absorbance spectra and Raman spectra reveal that with increasing number of alkali and alkaline earth fluoride components, the sum of P-O-P bond and O-P-O bond increases and glass network is strengthened. Consequently, the inhibition to nucleation and crystallization processes is improved, which is proved by the increment of thermal stability factors AT and S determined by differential scanning calorimetry. In addition, it was found that LiF has poor ability to form glass in univalent alkali fluorides and MgF2 has comparative strong ability to form glass in bivalent alkaline earth fluorides. (c) 2006 Published by Elsevier B.V.
Resumo:
A new Er(3+)/Yb(3+) co-doped phosphate glass has been prepared, which exhibits good chemical durability and spectralproperties. Planar graded index waveguides have been fabricated in the glass by (Ag+)-Na(+) ion exchange in a mixed melt of silver nitrate and potassium nitrate. Ion exchange is carried out by varying the process parameters such as temperature, diffusion time, and molten salt compositions. The diffusion parameters, diffusion coefficients, and activation energy are determined by the guidelines of fabricated waveguides, which are determined by the input prism coupling technique.
Resumo:
Because of the influence of OH groups in phosphate glasses on the radiation of rare-earth ions, the laser performance is degraded. The laser efficiency and the small signal gain experiment of several phosphate glass samples have been done, the concentration of OH groups in glasses was calculated from the measured absorption coefficient at 3.47 μm. It is shown that the concentration of OH groups in phosphate glasses can seriously influence the laser output characteristics, and the OH groups have worse influence on the laser amplifier than laser oscillator.