973 resultados para Z-trap
Resumo:
Wydział Chemii
Resumo:
Wydział Chemii: Pracownia Chemii Nukleozydów i Nukleotydów
Resumo:
Without corrective measures, Greek public debt will exceed 190 percent of GDP, instead of peaking at the anyway too-high target ratio of 167 percent of GDP of the March 2012 financial assistance programme. The rise is largely due to a negative feedback loop between high public debt and the collapse in GDP, and endangers Greek membership of the euro area. But a Greek exit would have devastating impacts both inside and outside Greece. A small reduction in the interest rate on bilateral loans, the exchange of European Central Bank holdings, buy-back of privately-held debt, and frontloading of some privatisation receipts are unlikely to be sufficient. A credible resolution should involve the reduction of the official lending rate to zero until 2020, an extension of the maturity of all official lending, and indexing the notional amount of all official loans to Greek GDP. Thereby, the debt ratio would fall below 100 percent of GDP by 2020, and if the economy deteriorates further, there will not be a need for new arrangements. But if growth is better than expected, official creditors will also benefit. In exchange for such help, the fiscal sovereignty of Greece should be curtailed further. An extended privatisation plan and future budget surpluses may be used to pay back the debt relief. The Greek fiscal tragedy highlights the need for a formal debt restructuring mechanism
Resumo:
Ecological traps are attractive population sinks created when anthropogenic habitat alteration inadvertently creates a mismatch between the attractiveness of a habitat based upon its settlement cues, and its current value for survival or reproduction. Traps represent a new threat to the conservation of native species, yet little attention has been given to developing practical approaches to eliminating them. In the northern Rocky Mountains of Montana, Olive-sided Flycatchers (Contopus cooperi) prefer to settle in patches of selectively harvested forest versus burned forest despite the lower reproductive success and higher nest predation risk associated with the former habitat. I investigated characteristics of preferred perch sites for this species and how these preferences varied between habitats and sexes. I then built on previous research to develop a range of management prescriptions for reducing the attractiveness of selectively harvested forest, thereby disarming the ecological trap. Female flycatchers preferred to forage from shorter perch trees than males, and females’ perches were shorter than other available perch trees. Both sexes preferred standing dead perch trees (snags) and these preferences were most obvious in harvested forest where snags are rarer. Because previous research shows that snag density is linked to habitat preference and spruce/fir trees are preferred nest substrate, my results suggest these two habitat components are focal habitat selection cues. I suggest alternative and complementary strategies for eliminating the ecological trap for Olive-sided Flycatchers including: (1) reduced retention and creation of snags, (2) avoiding selective harvest in spruce, fir, and larch stands, (3) avoiding retention of these tree species, and (4) selecting only even-aged canopy height trees for retention so as to reduce perch availability for female flycatchers. Because these strategies also have potential to negatively impact habitat suitability for other forest species or even create new ecological traps, we urge caution in the application of our management recommendations.
Resumo:
In recent years, a large number of papers have reported the response of the cusp to solar wind variations under conditions of northward or southward Interplanetary Magnetic Field (IMF) Z-component (BZ). These studies have shown the importance of both temporal and spatial factors in determining the extent and morphology of the cusp and the changes in its location, connected to variations in the reconnection geometry. Here we present a comparative study of the cusp, focusing on an interval characterised by a series of rapid reversals in the BZ-dominated IMF, based on observations from space-borne and ground-based instrumentation. During this interval, from 08:00 to 12:00 UT on 12 February 2003, the IMF BZ component underwent four reversals, remaining for around 30 min in each orientation. The Cluster spacecraft were, at the time, on an outbound trajectory through the Northern Hemisphere magnetosphere, whilst the mainland VHF and Svalbard (ESR) radars of the EISCAT facility were operating in support of the Cluster mission. Both Cluster and the EISCAT were, on occasion during the interval, observing the cusp region. The series of IMF reversal resulted in a sequence of poleward and equatorward motions of the cusp; consequently Cluster crossed the high altitude cusp twice before finally exiting the dayside magnetopause, both times under conditions of northward IMF BZ. The first magnetospheric cusp encounter, by all four Cluster spacecraft, showed reverse ion dispersion typical of lobe reconnection; subsequently, Cluster spacecraft 1 and 3 (only) crossed the cusp for a second time. We suggest that, during this second cusp crossing, these two spacecraft were likely to have been on newly closed field lines, which were first reconnected (opened) at low latitudes and later reconnected again (re-closed) poleward of the northern cusp.
Experimental comparison of the comprehensibility of a Z specification and its implementation in Java
Resumo:
Comprehensibility is often raised as a problem with formal notations, yet formal methods practitioners dispute this. In a survey, one interviewee said 'formal specifications are no more difficult to understand than code'. Measurement of comprehension is necessarily comparative and a useful comparison for a specification is against its implementation. Practitioners have an intuitive feel for the comprehension of code. A quantified comparison will transfer this feeling to formal specifications. We performed an experiment to compare the comprehension of a Z specification with that of its implementation in Java. The results indicate there is little difference in comprehensibility between the two. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Rate coefficients for reactions of nitrate radicals (NO3) with the anthropogenic emissions 2-methylpent-2-ene, (Z)-3-methylpent-2-ene.. ethyl vinyl ether, and the stress-induced plant emission ethyl vinyl ketone (pent-1-en-3-one) were determined to be (9.3 +/- 1.1) x 10(-12), (9.3 +/- 3.2) x 10(-12), (1.7 +/- 1.3) x 10(-12) and (9.4 + 2.7) x 10(-17) cm(3) molecule(-1) s(-1). We performed kinetic experiments at room temperature and atmospheric pressure using a relative-rate technique with GC-FID analysis. Experiments with ethyl vinyl ether required a modification of our established procedure that might introduce additional uncertainties, and the errors suggested reflect these difficulties. Rate coefficients are discussed in terms of electronic and steric influences. Atmospheric lifetimes with respect to important oxidants in the troposphere were calculated. NO3-initiated oxidation is found to be the strongly dominating degradation route for 2-methylpent-2-ene, (Z)-3-methylpent-2-ene and ethyl vinyl ether. Atmospheric concentrations of the alkenes and their relative contribution to the total NMHC emissions from trucks can be expected to increase if plans for the introduction of particle filters for diesel engines are implemented on a global scale. Thus more kinetic data are required to better evaluate the impact of these emissions.
Resumo:
The night-time atmospheric chemistry of the biogenic volatile organic compounds (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol ('leaf alcohol'), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these stress-induced plant emissions were measured using the discharge-flow technique. We employed off-axis continuous-wave cavity-enhanced absorption spectroscopy (CEAS) for the detection of NO3, which enabled us to work in excess of the hexenol compounds over NO3. The rate coefficients determined were (2.93 +/- 0.58) x 10(-13) cm(3) molecule(-1) s(-1), (2.67 +/- 0.42) x 10(-13) cm(3) molecule(-1) s(-1), (4.43 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1), (1.56 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1), and (1.30 +/- 0.24) x 10(-13) cm(3) molecule(-1) s(-1) for (Z)-hex-4-en-1-ol, (Z)-hex-3en-1-ol, (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol. The rate coefficient for the reaction of NO3 with (Z)-hex-3-en-1-ol agrees with the single published determination of the rate coefficient using a relative method. The other rate coefficients have not been measured before and are compared to estimated values. Relative-rate studies were also performed, but required modification of the standard technique because N2O5 (used as the source of NO3) itself reacts with the hexenols. We used varying excesses of NO2 to determine simultaneously rate coefficients for reactions of NO3 and N2O5 with (E)-hex-3-en-1-ol of (5.2 +/- 1.8) x 10(-13) cm(3) molecule(-1) s(-1) and (3.1 +/- 2.3) x 10(-18) cm(3) molecule(-1) s(-1). Our new determinations suggest atmospheric lifetimes with respect to NO3-initiated oxidation of roughly 1-4 h for the hexenols, comparable with lifetimes estimated for the atmospheric degradation by OH and shorter lifetimes than for attack by O-3. Recent measurements of [N2O5] suggest that the gas-phase reactions of N2O5 with unsaturated alcohols will not be of importance under usual atmospheric conditions, but they certainly can be in laboratory systems when determining rate coefficients.
Resumo:
Rate coefficients for reactions of nitrate radicals (NO3) with (Z)-pent-2-ene, (E)-pent-2-ene, (Z)-hex-2-ene, (E)-hex-2-ene, (Z)-hex-3-ene, (E)-hex-3-ene and (E)-3-methylpent-2-ene were determined to be (6.55 +/- 0.78) x 10(-13) cm(3) molecule(-1) s(-1), (3.78 +/- 0.45) x 10(-13) cm(3) molecule(-1) s(-1), (5.30 +/- 0.73) x 10(-13) cm(3) molecule(-1) s(-1), (3.83 +/- 0.47) x 10(-13) cm(3) molecule(-1) s(-1), (4.37 +/- 0.49) x 10(-13) cm(3) molecule(-1) s(-1), (3.61 +/- 0.40) x 10(-13) cm(3) molecule(-1) s(-1) and (8.9 +/- 1.5) x 10(-12) cm(3) molecule(-1) s(-1), respectively. We performed kinetic experiments at room temperature and atmospheric pressure using a relative-rate technique with GC-FID analysis. The experimental results demonstrate a surprisingly large cis-trans (Z-E) effect, particularly in the case of the pent-2-enes, where the ratio of rate coefficients is ca. 1.7. Rate coefficients are discussed in terms of electronic and steric influences, and our results give some insight into the effects of chain length and position of the double bond on the reaction of NO3 with unsaturated hydrocarbons. Atmospheric lifetimes were calculated with respect to important oxidants in the troposphere for the alkenes studied, and NO3-initiated oxidation is found to be the dominant degradation route for (Z)-pent-2-ene, (Z)-hex-3-ene and (E)-3-methylpent-2-ene.