781 resultados para Y2O3-EU3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite being a particularly good emitter, use of divalent Eu has been seriously limited. This is because severe reducing environments or special hosts are needed during synthesis of divalent Eu containing phosphors. In this work we stabilize Eu in its 2+ state (in CaAl2O4) using an open-air solution combustion reaction. The impact of fuel (F) to oxidizer (O) molar ratios (F/O = 0.5-2.0) on luminescence properties is explored. Chromaticity of Eu:CaAl2O4 depends sensitively on the F/O ratio. In general, higher F/O inhibits Eu3+ and promotes Eu2+ formation, which in turn improves the quality of the blue phosphor. EPR spectra show inhomogeneous broadening effects with the increase in F/O ratio, which suggests that disorder creation is promoted when F/O is increase. This is also confirmed by an increase in emission line width in PL spectra, when F/O is increased. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gd1.96-xYxEu0.04O3 (x = 0.0, 0.49, 0.98, 1.47, 1.96 mol%) nanophosphors were synthesized by propellant combustion method at low temperature (400 degrees C). The powder X-ray diffraction patterns of as formed Gd1.96Eu0.04O3 showed monoclinic phase, however with the addition of yttria it transforms from monoclinic to pure cubic phase. The porous nature increases with increase of yttria content. The particle size was estimated from Scherrer's and W-H plots which was found to be in the range 30-40 nm. These results were in well agreement with transmission electron microscopy studies. The optical band gap energies estimated were found to be in the range 5.32-5.49 eV. PL emission was recorded under 305 nm excitation show an intense emission peak at 611 nm along with other emission peaks at 582, 641 nm. These emission peaks were attributed to the transition of D-5(0) > F-7(J) (J = 0, 1, 2, 3) of Eu3+ ions. It was observed that PL intensity increases with increase of Y content up to x = 0.98 and thereafter intensity decreases. CIE color co-ordinates indicates that at x = 1.47 an intense red bright color can be achieved, which could find a promising application in flat panel displays. The cubic and monoclinic phases show different thermoluminescence glow peak values measured under identical conditions. The response of the cubic phase to the applied dose showed good linearity, negligible fading, and simple glow curve structure than monoclinic phase indicating that suitability of this phosphor in dosimetric applications. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZnO:Eu (0.1 mol%) nanopowders have been synthesized by auto ignition based low temperature solution combustion method. Powder X-ray diffraction (PXRD) patterns confirm the nanosized particles which exhibit hexagonal wurtzite structure. The crystallite size estimated from Scherrer's formula was found to be in the range 35-39 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies reveal particles are agglomerated with quasi-hexagonal morphology. A blue shift of absorption edge with increase in band gap is observed for Eu doped ZnO samples. Upon 254 nm excitation, ZnO:Eu nanopowders show peaks in regions blue (420-484 nm), green (528 nm) and red (600 nm) which corresponds to both Eu2+ and Eu3+ ions. The electron paramagnetic resonance (EPR) spectrum exhibits a broad resonance signal at g= 4.195 which is attributed to Eu2+ ions. Further, EPR and thermo-luminescence (TL) studies reveal presence of native defects in this phosphor. Using TL glow peaks the trap parameters have been evaluated and discussed. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultra-small crystals of undoped and Eu-doped gadolinium oxide (Gd2O3) were synthesised by a simple, rapid microwave-assisted route, using benzyl alcohol as the reaction solvent. XRD, XPS and TEM analysis reveal that the as-prepared powder material consists of nearly monodisperse Gd2O3 nanocrystals with an average diameter of 5.2 nm. The nanocrystals show good magnetic behaviour and exhibit a larger reduction in relaxation time of water protons than the standard Gd-DTPA complex currently used in MRI imaging. Cytotoxicity studies (both concentration- and time-dependent) of the Gd2O3 nanocrystals show no adverse effect on cell viability, evidencing their high biological compatibility. Finally, Eu:Gd2O3 nanocrystals were prepared by a similar route and the red luminescence of Eu3+ activator ions was used to study the cell permeability of the nanocrystals. Red fluorescence from Eu3+ ions observed by fluorescence microscopy shows that the nanocrystals (Gd2O3 and Eu:Gd2O3) can permeate not only the cell membrane but can also enter the cell nucleus, rendering them candidate materials not only for MRI imaging but also for drug delivery when tagged or functionalized with specific drug molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that an electrically soft ferroelectric host can be used to tune the photoluminescence (PL) response of rare-earth emitter ions by external electric field. The proof of this concept is demonstrated by changing the PL response of the Eu3+ ion by electric field on a model system Eu-doped 0.94(Na1/2Bi1/2TiO3)-0.06(BaTiO3). We also show that new channels of radiative transitions, forbidden otherwise, open up due to positional disorder in the system, which can as well be tuned by electric field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Y-Ba-Cu-O (YBCO) single grains have the potential to generate large trapped magnetic fields for a variety of engineering applications, and research on the processing and properties of this material has attracted world-wide interest. In particular, the introduction of flux pinning centres to the large grain microstructure to improve its current density, Jc, and hence trapped field, has been investigated extensively over the past decade. Y 2Ba4CuMOx [Y-2411(M)], where M = Nb, Ta, Mo, W, Ru, Zr, Bi and Ag, has been reported to form particularly effective flux pinning centres in YBCO due primarily to its ability to exist as nano-size inclusions in the superconducting phase matrix. However, the addition of the Y-2411(M) phase to the precursor composition complicates the melt-processing of single grains. We report an investigation of the growth rate of single YBCO grains containing Y-2411(Bi) phase inclusions and Y2O3. The superconducting properties of these large single grains have been measured specifically to investigate the effect of Y2O3 on broadening the growth window of these materials. 2010 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gadolinium oxide thin films have been prepared on silicon (100) substrates with a low-energy dual ion-beam epitaxial technique. Substrate temperature was an important factor to affect the crystal structures and textures in an ion energy range of 100-500 eV. The films had a monoclinic Gd2O3 structure with preferred orientation ((4) over bar 02) at low substrate temperatures. When the substrate temperature was increased, the orientation turned to (202), and finally, the cubic structure appeared at the substrate temperature of 700 degreesC, which disagreed with the previous report because of the ion energy. The AES studies found that Gadolinium oxide shared Gd2O3 structures, although there were a lot of oxygen deficiencies in the films, and the XPS results confirmed this. AFM was also used to investigate the surface images of the samples. Finally, the electrical properties were presented. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report micromodification of Eu element distribution in a silicate glass with femtosecond laser irradiation. Elemental analysis shows that the content of Eu decreased at the focal point and increased in a ring-shaped region around the focal point, which indicates migration of Eu ions has been induced by the femtosecond laser irradiation. Confocal fluorescence spectra demonstrate that the fluorescence intensity of Eu3+ ions increased by 20% in the laser-induced, Eu-enriched, ring-shaped region compared with that for nonirradiated glass. The mechanism for the laser induced change in fluorescence properties of Eu3+ has been investigated. (C) 2009 Optical Society of America

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce3+ and B2O3 are introduced into erbium-doped Bi2O3-SiO2 glass to enhance the luminescence emission and optic spectra characters of Er3+. The energy transfer from Er3+ to Ce3+ will obviously be improved with the phonon energy increasing by the addition of B2O3. Here, the nonradiative rate, the lifetime of the I-4(11/2) -> I-4(3/2) transition, and the emission intensity and bandwidth of the 1.5 mu m luminescence with the I-4(13/2) -> I-4(5/2) transition of Er3+ are discussed in detail. The results show that the optical parameters of Er3+ in this bismuth-borate-silicate glass are nearly as good as that in tellurite glass, and the physical properties are similar to those in silicate glass. With the Judd-Ofelt and nonradiative theory analyses, the multiphonon decay and phonon-assisted energy-transfer (PAT) rates are calculated for the Er3+/Ce3+ codoped glasses. For the PAT process, an optimum value of the glass phonon energy is obtained after B2O3 is introduced into the Er3+/Ce3+ codoped bismuth-silicate glasses, and it much improves the energy-transfer rate between Er3+ I-4(11/2)-I-4(13/2) and Ce3+ F-2(5/2) -> F-2(7/2), although there is an energy mismatch. (c) 2007 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The doped Eu3+ ions can be partly reduced to Eu2+ in a series of MO-B2O3: Eu (M=Ba, Sr, Ca) glasses synthesized in air atmosphere, but not in the 12CaO-7Al(2)O(3): Eu glass. The different redox-behavior of Eu ions in these two glass systems is attributed to the different host optical basicity. It is found that a lower valence state of Eu2+ is more favorable in acidic glasses, which have lower optical basicities. A notion of the critical value of optical basicity is introduced empirically, which can be used as a guide for the selection of glass composition suitable to incorporate Eu2+ for luminescence. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compounds of Sr3Al2O6: Eu, Sr4Al14O25: Eu, and BaZnSiO4: Eu were synthesized by high-temperature solid state reactions. The doping Eu3+ ions were partially reduced to Eu2+ in Sr4Al14O25: Eu and BaZnSiO4: Eu prepared in an oxidizing atmosphere, N-2 + O-2. However, such an abnormal reduction process could not be performed in Sr3Al2O6: Eu, which was also prepared in an atmosphere of N-2 + O-2. Moreover, even though Sr3Al2O6: Eu was synthesized in a reducing condition CO, only part of the Eu3+ ions was reduced to Eu2+. The existence of trivalent and divalent europium ions was confirmed by photoluminescent spectra. The different valence-change behaviors of europium ions in the hosts were attributed to the difference in host crystal structures. The higher the crystal structure stiffness, the easier the reduction process from Eu3+ to Eu2+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

KMgF3F EuEu^3Eu^2100029KMgFX1h100hKMgF3Eu^2X360nmKMgF310^3Gy30dKMgF3Eu^2360nm

Relevância:

10.00% 10.00%

Publicador:

Resumo:

-Y2SiO5Eu^3Y2SiO5Y2SiO5260-270nm320nmFO^-YSOEu^3Y2SiO5FOEu^2300nm390nmEu^3Y2SiO5

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report near infrared broadband emission of bismuth-doped barium-aluminum-borate glasses. The broadband emission covers 1.3 mum window in optical telecommunication systems. And it possesses wide full width at half maximum (FWHM) of similar to 200nm and long lifetime as long as 350 mus. The luminescent properties are quite sensitive to glass compositions and excitation wavelengths. Based on energy matching conditions, we suggest that the infrared emission may be ascribed to P-3(1) --> P-3(0) transition of Bi+. The broad infrared emission characteristics of this material indicate that it might be a promising candidate for broadband optical fiber amplifiers and tunable lasers. (C) 2005 Optical Society of America.