993 resultados para Y Receptor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ES] En este trabajo, hemos tratado de identificar, y poner a punto las técnicas necesarias para la cuantificación de los miRNAs asociados con el control post-transcripcional del receptor de andrógenos (AR) y el receptor de estrógenos (ER) en tumores de mama. Para ello, hemos usado las bases de datos publicadas en Internet. Además, comparamos la cantidad y la calidad del RNA total aislado (miRNA y mRNA) en 11 tumores de mama incluidos en parafina mediante el uso de dos kits comerciales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is abundantly expressed in the nervous system and acts on target cells through NPY receptors. The human adrenal cortex and adrenal tumors express NPY receptor subtype Y1, but its function is unknown. We studied Y1-mediated signaling, steroidogenesis and cell proliferation in human adrenal NCI-H295R cells. Radioactive ligand binding studies showed that H295R cells express Y1 receptor specifically. NPY treatment of H295R cells stimulated the MEK/ERK1/2 pathway, confirming that H295R cells express functional Y1 receptors. Studies of the effect of NPY and related peptide PYY on adrenal steroidogenesis revealed a decrease in 11-deoxycortisol production. RIA measurements of cortisol from cell culture medium confirmed this finding. Co-treatment with the Y1 antagonist BIBP2336 reversed the inhibitory effect of NPY on cortisol production proving specificity of this effect. At mRNA level, NPY decreased HSD3B2 and CYP21A2 expression. However NPY revealed no effect on cell proliferation. Our data show that NPY can directly regulate human adrenal cortisol production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A previous study identified the peroxisome proliferator-activated receptor alpha (PPARalpha) activation biomarkers 21-steroid carboxylic acids 11beta-hydroxy-3,20-dioxopregn-4-en-21-oic acid (HDOPA) and 11beta,20-dihydroxy-3-oxo-pregn-4-en-21-oic acid (DHOPA). In the present study, the molecular mechanism and the metabolic pathway of their production were determined. The PPARalpha-specific time-dependent increases in HDOPA and 20alpha-DHOPA paralleled the development of adrenal cortex hyperplasia, hypercortisolism, and spleen atrophy, which was attenuated in adrenalectomized mice. Wy-14,643 activation of PPARalpha induced hepatic FGF21, which caused increased neuropeptide Y and agouti-related protein mRNAs in the hypothalamus, stimulation of the agouti-related protein/neuropeptide Y neurons, and activation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in increased adrenal cortex hyperplasia and corticosterone production, revealing a link between PPARalpha and the HPA axis in controlling energy homeostasis and immune regulation. Corticosterone was demonstrated as the precursor of 21-carboxylic acids both in vivo and in vitro. Under PPARalpha activation, the classic reductive metabolic pathway of corticosterone was suppressed, whereas an alternative oxidative pathway was uncovered that leads to the sequential oxidation on carbon 21 resulting in HDOPA. The latter was then reduced to the end product 20alpha-DHOPA. Hepatic cytochromes P450, aldehyde dehydrogenase (ALDH3A2), and 21-hydroxysteroid dehydrogenase (AKR1C18) were found to be involved in this pathway. Activation of PPARalpha resulted in the induction of Aldh3a2 and Akr1c18, both of which were confirmed as target genes through introduction of promoter luciferase reporter constructs into mouse livers in vivo. This study underscores the power of mass spectrometry-based metabolomics combined with genomic and physiologic analyses in identifying downstream metabolic biomarkers and the corresponding upstream molecular mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bladder pain syndrome (BPS) is a clinical syndrome of pelvic pain and urinary urgency-frequency in the absence of a specific cause. Investigating the expression levels of genes involved in the regulation of epithelial permeability, bladder contractility, and inflammation, we show that neurokinin (NK)1 and NK2 tachykinin receptors were significantly down-regulated in BPS patients. Tight junction proteins zona occludens-1, junctional adherins molecule -1, and occludin were similarly down-regulated, implicating increased urothelial permeability, whereas bradykinin B(1) receptor, cannabinoid receptor CB1 and muscarinic receptors M3-M5 were up-regulated. Using cell-based models, we show that prolonged exposure of NK1R to substance P caused a decrease of NK1R mRNA levels and a concomitant increase of regulatory micro(mi)RNAs miR-449b and miR-500. In the biopsies of BPS patients, the same miRNAs were significantly increased, suggesting that BPS promotes an attenuation of NK1R synthesis via activation of specific miRNAs. We confirm this hypothesis by identifying 31 differentially expressed miRNAs in BPS patients and demonstrate a direct correlation between miR-449b, miR-500, miR-328, and miR-320 and a down-regulation of NK1R mRNA and/or protein levels. Our findings further the knowledge of the molecular mechanisms of BPS, and have relevance for other clinical conditions involving the NK1 receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sphingosine-1-phosphate (S1P) acts as high affinity agonist at specific G-protein-coupled receptors, S1P(1-5), that play important roles e.g. in the cardiovascular and immune systems. A S1P receptor modulating drug, FTY720 (fingolimod), has been effective in phase III clinical trials for multiple sclerosis. FTY720 is a sphingosine analogue and prodrug of FTY720-phosphate, which activates all S1P receptors except S1P(2) and disrupts lymphocyte trafficking by internalizing the S1P(1) receptor. Cis-4-methylsphingosine (cis-4M-Sph) is another synthetic sphingosine analogue that is readily taken up by cells and phosphorylated to cis-4-methylsphingosine-1-phosphate (cis-4M-S1P). Therefore, we analysed whether cis-4M-Sph interacted with S1P receptors through its metabolite cis-4M-S1P in a manner similar to FTY720. Indeed, cis-4M-Sph caused an internalization of S1P receptors, but differed from FTY720 as it acted on S1P(2) and S1P(3) and only weakly on S1P(1), while FTY720 internalized S1P(1) and S1P(3) but not S1P(2). Consequently, pre-incubation with cis-4M-Sph specifically desensitized S1P-induced [Ca(2+)](i) increases, which are mediated by S1P(2) and S1P(3), in a time- and concentration-dependent manner. This effect was not shared by sphingosine or FTY720, indicating that metabolic stability and targeting of S1P(2) receptors were important. The desensitization of S1P-induced [Ca(2+)](i) increases was dependent on the expression of SphKs, predominantly of SphK2, and thus mediated by cis-4M-S1P. In agreement, cis-4M-S1P was detected in the supernatants of cells exposed to cis-4M-Sph. It is concluded that cis-4M-Sph, through its metabolite cis-4M-S1P, acts as a S1P receptor modulator and causes S1P receptor internalization and desensitization. The data furthermore help to define requirements for sphingosine kinase substrates as S1P receptor modulating prodrugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD34 (+) progenitor cells are a promising source of regeneration in atherosclerosis or ischemic heart disease. However, as recently published, CD34(+) progenitor cells have the potential to differentiate not only into endothelial cells but also into foam cells upon interaction with platelets. The mechanism of platelet-induced differentiation of progenitor cells into foam cells is as yet unclear. In the present study we investigated the role of scavenger receptor (SR)-A and CD36 in platelet-induced foam cell formation. Human CD34(+) progenitor cells were freshly derived from human umbilical veins and were co-incubated with platelets (2 x 10(8)/mL) up to 14 days resulting in large lipid-laden foam cells. Developing macrophages expressed SR-A, CD36, and Lox-1 as measured by fluorescent-activated cell sorting analysis. The presence of a blocking anti-CD36 or anti-SR-A antibody nearly abrogated foam cell formation, whereas anti-Lox-1 did not affect foam cell formation. Consistently blocking either anti-CD36 or anti-SR-A antibody significantly reduced the phagocytosis of lipid-laden platelets by macrophages. We conclude that CD36 and SR-A play an important role in platelet-induced foam cell formation from CD34(+) progenitor cells and thus represent a promising target to inhibit platelet-induced foam cell formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastrinomas, a rare group of neuroendocrine tumors, are responsible for severe peptic disease and diarrhea. Although symptomatic control may be achieved with proton-pump inhibitors (PPIs) and somatostatin analogues (SSAs), data are limited regarding the possible antitumor effect of the peptide receptor radioligand therapy (PRRT) with radiolabeled SSAs in gastrinoma patients. The goal of this study was to assess the effect of PRRT on symptoms, gastrin secretion, and tumor load in patients with progressive malignant gastrinomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skin irritant polyyne falcarinol (panaxynol, carotatoxin) is found in carrots, parsley, celery, and in the medicinal plant Panax ginseng. In our ongoing search for new cannabinoid (CB) receptor ligands we have isolated falcarinol from the endemic Sardinian plant Seseli praecox. We show that falcarinol exhibits binding affinity to both human CB receptors but selectively alkylates the anandamide binding site in the CB(1) receptor (K(i)=594nM), acting as covalent inverse agonist in CB(1) receptor-transfected CHO cells. Given the inherent instability of purified falcarinol we repeatedly isolated this compound for biological characterization and one new polyyne was characterized. In human HaCaT keratinocytes falcarinol increased the expression of the pro-allergic chemokines IL-8 and CCL2/MCP-1 in a CB(1) receptor-dependent manner. Moreover, falcarinol inhibited the effects of anandamide on TNF-alpha stimulated keratinocytes. In vivo, falcarinol strongly aggravated histamine-induced oedema reactions in skin prick tests. Both effects were also obtained with the CB(1) receptor inverse agonist rimonabant, thus indicating the potential role of the CB(1) receptor in skin immunopharmacology. Our data suggest anti-allergic effects of anandamide and that falcarinol-associated dermatitis is due to antagonism of the CB(1) receptor in keratinocytes, leading to increased chemokine expression and aggravation of histamine action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) receptor imaging is superior to somatostatin receptor subtype 2 (sst(2)) imaging in localizing benign insulinomas. Here, the role of GLP-1 and sst(2) receptor imaging in the management of malignant insulinoma patients was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastrin-releasing peptide (GRP) and GRP receptors (GRPR) play a role in tumor angiogenesis. Recently, GRPR were found to be frequently expressed in the vasculature of a large variety of human cancers. Here, we characterize these GRPR by comparing the vascular GRPR expression and localization in a selection of human cancers with that of an established biological marker of neoangiogenesis, the vascular endothelial growth factor (VEGF) receptor. In vitro quantitative receptor autoradiography was performed in parallel for GRPR and VEGF receptors (VEGFR) in 32 human tumors of various origins, using ¹²⁵I-Tyr-bombesin and ¹²⁵I-VEGF₁₆₅ as radioligands, respectively. Moreover, VEGFR-2 was evaluated immunohistochemically. All tumors expressed GRPR and VEGFR in their vascular system. VEGFR were expressed in the endothelium in the majority of the vessels. GRPR were expressed in a subpopulation of vessels, preferably in their muscular coat. The vessels expressing GRPR were all VEGFR-positive whereas the VEGFR-expressing vessels were not all GRPR-positive. GRPR expressing vessels were found immunohistochemically to co-express VEGFR-2. Remarkably, the density of vascular GRPR was much higher than that of VEGFR. The concomitant expression of GRPR with VEGFR appears to be a frequent phenomenon in many human cancers. The GRPR, localized and expressed in extremely high density in a subgroup of vessels, may function as target for antiangiogenic tumor therapy or angiodestructive targeted radiotherapy with radiolabeled bombesin analogs alone, or preferably together with VEGFR targeted therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bombesin receptors are overexpressed on a variety of human tumors. In particular, the gastrin-releasing peptide receptor (GRPr) has been identified on prostate and breast cancers and on gastrointestinal stromal tumors. The current study aims at developing clinically translatable bombesin antagonist-based radioligands for SPECT and PET of GRPr-positive tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preclinical studies have indicated that somatostatin receptor (sst)-expressing tumors demonstrate higher uptake of radiolabeled sst antagonists than of sst agonists. In this study, we evaluated whether imaging with sst antagonists was feasible in patients.