983 resultados para Wilson, Jeremy D
Resumo:
Background: Vitamin D-resistant rickets type-IIA (VDRR-IIA) is a rare, congenital, metabolic disorder characterized by hypocalcemia, rickets, and alopecia. There are reports correlating calcium-metabolic disorders with basal ganglia calcification (BGC) and neuropsychiatric symptoms. Objective: The authors document and discuss the relationships of these phenomena. Method: The authors describe a patient born with VDRR-IIA who subsequently developed BGC at age 15, and catatonic symptoms of progressive severity at age 16. Results: There appeared to be a positive correlation between the severity of BGC and neuropsychiatric symptoms. Discussion: This is the first time VDRR-IIA, BGC, and catatonia have been reported in a patient, and the authors discuss the relationship among the conditions. (Psychosomatics 2009; 50: 420-424)
Resumo:
Background & aims: Hypovitaminosis D [serum 25 vitamin D < 30 ng/ml] is related to the development of metabolic bone disease and greater risk of chronic illnesses. However, it is frequently under-diagnosed, mainly in countries where UV radiation is abundant. We prospectively determined the prevalence and the predictors of serum 25 vitamin D (s25(OH)D) in a healthy Brazilian population after the winter and after the summer. Methods: 603 (118M and 485F) healthy Brazilian volunteers aged 18-90 years from a universitary hospital were selected after the winter of 2006. From the initial sample, 209 volunteers (31M and 178F) accepted to participate in a second health check after the subsequent summer. Results: After the winter, median s25(OH)D was 21.4 ng/mL and 77.4% of the population presented hypovitaminosis D. s25(OH)D was significantly related to age, BMI, PTH and race. In multivariate linear regression analysis, s25(OH)D was significantly and independently dependent on age, glycemia and skin color. Significant increase in s25(OH)D was verified after summer [10.6 (3.7-19.3 ng/ml); p < 0.001] and this improvement was dependent on age. We also observed a significant decrease in hyperparathyroidism prevalence (20.8% vs. 4.9%; P < 0.0001). Conclusion: In Sao Paulo, at the end of winter, we observed a high prevalence of hypovitaminosis D and secondary hyperparathyroidism in healthy adults. s25(OH)D was dependent on age and skin color. After summer, we observed a decrease in the prevalence of hypovitaminosis D. This unexpected finding emphasizes the need for a strong recommendation to monitor s25(OH)D, even in a sunny country such as Brazil. (C) 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Background/Aim: Some studies have identified an association of kidney stone formation with vitamin D receptor (VDR) or calcium-sensing receptor (CaSR) polymorphisms. We aimed to evaluate the association between these polymorphisms with urinary calcium excretion (uCa) in calcium-stone-forming patients. Methods: VDR polymorphism, detected by BsmI digestion, and 3 CaSR polymorphisms (G/T at codon 986, G/A at codon 990 and C/G at codon 1011), detected by direct sequencing, were evaluated in 100 hypercalciuric (HCa) and 101 normocalciuric (NCa) calcium-stone-forming patients. Results: The total allelic frequency of VDR polymorphism was: 16% BB, 49% Bb and 35% bb. The prevalence of bb genotype was significantly higher in the HCa when compared to the NCa group (43 vs. 27%). With respect to CaSR polymorphisms, 986S, 990G and 1011E variant alleles were detected, respectively, in 5, 4 and 3% of the whole sample and 5 CaSR haplotypes were identified: 94% ARQ (wildtype), 3% SRQ, 1.5% AGQ, 1.0% ARE and 0.5% AGE. No statistical differences have been observed between NCa and HCa with respect to these CaSR haplotypes. Conclusions: The present study suggested that bb homozygous for VDR polymorphism was overrepresented in hypercalciuric stone formers. Urinary calcium excretion was not associated with CaSR polymorphism in the present sample. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields alpha-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at 1 week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at 1 week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields a-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at I week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at I week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Epilepsy is the most common serious neurological condition and sudden unexpected death in epilepsy (SUDEP) is the most important direct epilepsy-related cause of death. information concerning risk factors for SUDEP is conflicting, but high seizure frequency is a potential risk factor. Additionally, potential pathomechanisms for SUDEP are unknown, but it is very probable that cardiac arrhythmias during and between seizures or transmission of epileptic activity to the heart via the autonomic nervous system potentially play a role. In parallel, studies have shown a link between vitamin D dysfunction and epilepsy. Moreover, several evidences in the literature suggest an association between low vitamin D and seizures, indicating the possibility of anticonvulsant properties of this hormone. Quite interesting, a growing body of data suggests that low vitamin D levels may adversely affect cardiovascular health, directly associated with death from heart failure and sudden cardiac death. In view of the above findings, our research group focused in this review article that SUDEP, at least in some cases, could be related with low vitamin D levels. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective. The relationship of multipotent mesenchymal stromal cells (MSC) with pericytes and fibroblasts has not been established thus far, although they share many markers of primitive marrow stromal cells and the osteogenic, adipogenic, and chondrogenic differentiation potentials. Materials and Methods. We compared MSCs from adult or fetal tissues, MSC differentiated in vitro, fibroblasts and cultures of retinal pericytes obtained either by separation with anti-CD146 or adhesion. The characterizations included morphological, immunophenotypic, gene-expression profile, and differentiation potential. Results. Osteogenic, adipocytic, and chondrocytic differentiation was demonstrated for MSC, retinal perivascular cells, and fibroblasts. Cell morphology and the phenotypes defined by 22 markers were very similar. Analysis of the global gene expression obtained by serial analysis of gene expression for 17 libraries and by reverse transcription polymerase chain reaction of 39 selected genes from 31 different cell cultures, revealed similarities among MSC, retinal perivascular cells, and hepatic stellate cells. Despite this overall similarity, there was a heterogeneous expression of genes related to angiogenesis, in MSC derived from veins, artery, perivascular cells, and fibroblasts. Evaluation of typical pericyte and MSC transcripts, such as NG2, CD146, CD271, and CD140B on CD146 selected perivascular cells and MSC by real-time polymerase chain reaction confirm the relationship between these two cell types. Furthermore, the inverse correlation between fibroblast-specific protein-1 and CD146 transcripts observed on pericytes, MSC, and fibroblasts highlight their potential use as markers of this differentiation pathway. Conclusion. Our results indicate that human MSC and pericytes are similar cells located in the wall of the vasculature, where they function as cell sources for repair and tissue maintenance, whereas fibroblasts are more differentiated cells with more restricted differentiation potential. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.
Resumo:
We report on the cardiovascular effects of L-glutamate (L-glu) microinjection into the hypothalamic paraventricular nucleus (PVN) as well as the mechanisms involved in their mediation. L-glu microinjection into the PVN caused dose-related pressor and tachycardiac responses in unanesthetized rats. These responses were blocked by intravenous (i.v.) pretreatment with the ganglion blocker pentolinium (PE; 5 mg/kg), suggesting sympathetic mediation. Responses to L-glu were not affected by local microinjection of the selective non-NMDA receptor antagonist NBQX (2 nmol) or by local microinjection of the selective NMDA receptor antagonist LY235959 (LY; 2 nmol). However, the tachycardiac response was changed to a bradycardiac response after treatment with LY235959, suggesting that NMDA receptors are involved in the L-glu heart rate response. Local pretreatment with LY235959 associated with systemic PE or dTyr(CH(2))(5)(Me)AVP (50 mu g/kg) respectively potentiated or blocked the response to L-glu, suggesting that L-glu responses observed after LY235959 are vasopressin mediated. The increased pressor and bradycardiac responses observed after LY + PE was blocked by subsequent i.v. treatment with the V(1)-vasopressin receptor antagonist dTyr(CH(2))(5)(Me)AVP, suggesting vasopressin mediation. The pressor and bradycardiac response to L-glu microinjection into the PVN observed in animals pretreated with LY + PE was progressively inhibited and even blocked by additional pretreatment with increasing doses of NBQX (2, 10, and 20 nmol) microinjected into the PVN, suggesting its mediation by local non-NMDA receptors. In conclusion, results suggest the existence of two glutamatergic pressor pathways in the PVN: one sympathetic pathway that is mediated by NMDA receptors and a vasopressinergic pathway that is mediated by non-NMDA receptors. (C) 2009 Wiley-Liss, Inc.