999 resultados para Wavelength dependent
Resumo:
Background: The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferatoractivated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents.Objectives: In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action.Methods: As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses.Results: DEHP-treated mice were protected from diet-induced obesity via PPARalpha-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARbeta nor PPARgamma was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARalpha-humanized mice. These species differences are associated with a different pattern of coregulator recruitment.Conclusion: These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARalpha signaling and highlight the metabolic importance of the species-specific activation of PPARalpha by xenobiotic compounds. Editor's SummaryDiethylhexyl phthalate (DEHP) is an industrial plasticizer used in cosmetics, medical devices, food packaging, and other applications. Evidence that DEHP metabolites can activate peroxisome proliferatoractivated receptors (PPARs) involved in fatty acid oxidation (PPARalpha and PPARbeta) and adiposite function and insulin resistance (PPARgamma) has raised concerns about potential effects of DEHP on metabolic homeostasis. In rodents, PPARalpha activation also induces hepatic peroxisome proliferation, but this response to PPARalpha activation is not observed in humans. Feige et al. (p. 234) evaluated systemic and metabolic consequences of high-dose oral DEHP in combination with a high-fat diet in wild-type mice and genetically engineered mouse PPAR models. The authors report that mice exposed to DEHP gained less weight than controls, without modifying their feeding behavior; they also exhibited lower triglyceride levels, smaller adipocytes, and improved glucose tolerance compared with controls. These effects, which were observed in mice fed both high-fat and standard diets, appeared to be mediated by PPARalpha-dependent activation of hepatic fatty acid catabolism without apparent involvement of PPARbeta or PPARgamma. However, mouse models that expressed human (versus mouse) PPARalpha tended to gain more weight on a high-fat diet than their DHEP-unexposed counterparts. The authors conclude that findings support species-specific metabolic effects of DEHP mediated by PPARalpha activation.
Resumo:
Insulin-dependent diabetes mellitus is an autoimmune disease in which pancreatic islet beta cells are destroyed by a combination of immunological and inflammatory mechanisms. In particular, cytokine-induced production of nitric oxide has been shown to correlate with beta cell apoptosis and/or inhibition of insulin secretion. In the present study, we investigated whether the interleukin (IL)-1beta intracellular signal transduction pathway could be blocked by overexpression of dominant negative forms of the IL-1 receptor interacting protein MyD88. We show that overexpression of the Toll domain or the lpr mutant of MyD88 in betaTc-Tet cells decreased nuclear factor kappaB (NF-kappaB) activation upon IL-1beta and IL-1beta/interferon (IFN)-gamma stimulation. Inducible nitric oxide synthase mRNA accumulation and nitrite production, which required the simultaneous presence of IL-1beta and IFN-gamma, were also suppressed by approximately 70%, and these cells were more resistant to cytokine-induced apoptosis as compared with parental cells. The decrease in glucose-stimulated insulin secretion induced by IL-1beta and IFN-gamma was however not prevented. This was because these dysfunctions were induced by IFN-gamma alone, which decreased cellular insulin content and stimulated insulin exocytosis. These results demonstrate that IL-1beta is involved in inducible nitric oxide synthase gene expression and induction of apoptosis in mouse beta cells but does not contribute to impaired glucose-stimulated insulin secretion. Furthermore, our data show that IL-1beta cellular actions can be blocked by expression of MyD88 dominant negative proteins and, finally, that cytokine-induced beta cell secretory dysfunctions are due to the action of IFN-gamma.
Resumo:
Measuring tissue oxygenation in vivo is of interest in fundamental biological as well as medical applications. One minimally invasive approach to assess the oxygen partial pressure in tissue (pO2) is to measure the oxygen-dependent luminescence lifetime of molecular probes. The relation between tissue pO2 and the probes' luminescence lifetime is governed by the Stern-Volmer equation. Unfortunately, virtually all oxygen-sensitive probes based on this principle induce some degree of phototoxicity. For that reason, we studied the oxygen sensitivity and phototoxicity of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate [Ru(Phen)] using a dedicated optical fiber-based, time-resolved spectrometer in the chicken embryo chorioallantoic membrane. We demonstrated that, after intravenous injection, Ru(Phen)'s luminescence lifetime presents an easily detectable pO2 dependence at a low drug dose (1 mg∕kg) and low fluence (120 mJ∕cm2 at 470 nm). The phototoxic threshold was found to be at 10 J∕cm2 with the same wavelength and drug dose, i.e., about two orders of magnitude larger than the fluence necessary to perform a pO2 measurement. Finally, an illustrative application of this pO2 measurement approach in a hypoxic tumor environment is presented.
Resumo:
As fitness returns during a breeding attempt are context-dependent, parents are predicted to bias their food allocation within a brood from poor towards good condition nestlings when environmental conditions deteriorate. We tested this prediction in the Alpine swift and the European starling, two migratory bird species, by modifying an ultraviolet (UV) visual signal of condition in nestlings and exploring how parents allocate food to their young as the season progresses. We show in both species that: (i) UV light reflected by the body skin of offspring positively correlates with their stature (i.e. body mass and skeletal size) and (ii) parental favouritism towards young with more UV reflective skin gradually increases as the season progresses. Early-breeding parents supplied food preferentially to UV pale (i.e. small stature) nestlings, whereas late-breeding parents favoured UV bright offspring (i.e. large stature). These results emphasize that parents use UV signals of offspring condition to adjust their feeding strategies depending on the ecological context.
Resumo:
AIM/HYPOTHESIS: Endoplasmic reticulum (ER) stress, which is involved in the link between inflammation and insulin resistance, contributes to the development of type 2 diabetes mellitus. In this study, we assessed whether peroxisome proliferator-activated receptor (PPAR)β/δ prevented ER stress-associated inflammation and insulin resistance in skeletal muscle cells. METHODS: Studies were conducted in mouse C2C12 myotubes, in the human myogenic cell line LHCN-M2 and in skeletal muscle from wild-type and PPARβ/δ-deficient mice and mice exposed to a high-fat diet. RESULTS: The PPARβ/δ agonist GW501516 prevented lipid-induced ER stress in mouse and human myotubes and in skeletal muscle of mice fed a high-fat diet. PPARβ/δ activation also prevented thapsigargin- and tunicamycin-induced ER stress in human and murine skeletal muscle cells. In agreement with this, PPARβ/δ activation prevented ER stress-associated inflammation and insulin resistance, and glucose-intolerant PPARβ/δ-deficient mice showed increased phosphorylated levels of inositol-requiring 1 transmembrane kinase/endonuclease-1α in skeletal muscle. Our findings demonstrate that PPARβ/δ activation prevents ER stress through the activation of AMP-activated protein kinase (AMPK), and the subsequent inhibition of extracellular-signal-regulated kinase (ERK)1/2 due to the inhibitory crosstalk between AMPK and ERK1/2, since overexpression of a dominant negative AMPK construct (K45R) reversed the effects attained by PPARβ/δ activation. CONCLUSIONS/INTERPRETATION: Overall, these findings indicate that PPARβ/δ prevents ER stress, inflammation and insulin resistance in skeletal muscle cells by activating AMPK.
Resumo:
Activation of the mitogen-activated protein (MAP) kinase cascade by progesterone in Xenopus oocytes leads to a marked down-regulation of activity of the amiloride-sensitive epithelial sodium channel (ENaC). Here we have studied the signaling pathways involved in progesterone effect on ENaC activity. We demonstrate that: (i) the truncation of the C termini of the alphabetagammaENaC subunits results in the loss of the progesterone effect on ENaC; (ii) the effect of progesterone was also suppressed by mutating conserved tyrosine residues in the Pro-X-X-Tyr (PY) motif of the C termini of the beta and gamma ENaC subunits (beta(Y618A) and gamma(Y628A)); (iii) the down-regulation of ENaC activity by progesterone was also suppressed by co-expression ENaC subunits with a catalytically inactive mutant of Nedd4-2, a ubiquitin ligase that has been previously demonstrated to decrease ENaC cell-surface expression via a ubiquitin-dependent internalization/degradation mechanism; (iv) the effect of progesterone was significantly reduced by suppression of consensus sites (beta(T613A) and gamma(T623A)) for ENaC phosphorylation by the extracellular-regulated kinase (ERK), a MAP kinase previously shown to facilitate the binding of Nedd4 ubiquitin ligases to ENaC; (v) the quantification of cell-surface-expressed ENaC subunits revealed that progesterone decreases ENaC open probability (whole cell P(o), wcP(o)) and not its cell-surface expression. Collectively, these results demonstrate that the binding of active Nedd4-2 to ENaC is a crucial step in the mechanism of ENaC inhibition by progesterone. Upon activation of ERK, the effect of Nedd4-2 on ENaC open probability can become more important than its effect on ENaC cell-surface expression.
Resumo:
Digital holographic microscopy (DHM) allows optical-path-difference (OPD) measurements with nanometric accuracy. OPD induced by transparent cells depends on both the refractive index (RI) of cells and their morphology. This Letter presents a dual-wavelength DHM that allows us to separately measure both the RI and the cellular thickness by exploiting an enhanced dispersion of the perfusion medium achieved by the utilization of an extracellular dye. The two wavelengths are chosen in the vicinity of the absorption peak of the dye, where the absorption is accompanied by a significant variation of the RI as a function of the wavelength.
Resumo:
Upon agonist stimulation, endothelial cells trigger smooth muscle relaxation through the release of relaxing factors such as nitric oxide (NO). Endothelial cells of mouse aorta are interconnected by gap junctions made of connexin40 (Cx40) and connexin37 (Cx37), allowing the exchange of signaling molecules to coordinate their activity. Wild-type (Cx40(+/+)) and hypertensive Cx40-deficient mice (Cx40(-/-)), which also exhibit a marked decrease of Cx37 in the endothelium, were used to investigate the link between the expression of endothelial connexins (Cx40 and Cx37) and endothelial nitric oxide synthase (eNOS) expression and function in the mouse aorta. With the use of isometric tension measurements in aortic rings precontracted with U-46619, a stable thromboxane A(2) mimetic, we first demonstrate that ACh- and ATP-induced endothelium-dependent relaxations solely depend on NO release in both Cx40(+/+) and Cx40(-/-) mice, but are markedly weaker in Cx40(-/-) mice. Consistently, both basal and ACh- or ATP-induced NO production were decreased in the aorta of Cx40(-/-) mice. Altered relaxations and NO release from aorta of Cx40(-/-) mice were associated with lower expression levels of eNOS in the aortic endothelium of Cx40(-/-) mice. Using immunoprecipitation and in situ ligation assay, we further demonstrate that eNOS, Cx40, and Cx37 tightly interact with each other at intercellular junctions in the aortic endothelium of Cx40(+/+) mice, suggesting that the absence of Cx40 in association with altered Cx37 levels in endothelial cells from Cx40(-/-) mice participate to the decreased levels of eNOS. Altogether, our data suggest that the endothelial connexins may participate in the control of eNOS expression levels and function.
Resumo:
1. Wind pollination is thought to have evolved in response to selection for mechanisms to promote pollination success, when animal pollinators become scarce or unreliable. We might thus expect wind-pollinated plants to be less prone to pollen limitation than their insect-pollinated counterparts. Yet, if pollen loads on stigmas of wind-pollinated species decline with distance from pollen donors, seed set might nevertheless be pollen-limited in populations of plants that cannot self-fertilize their progeny, but not in self-compatible hermaphroditic populations.2. Here, we test this hypothesis by comparing pollen limitation between dioecious and hermaphroditic (monoecious) populations of the wind-pollinated herb Mercurialis annua.3. In natural populations, seed set was pollen-limited in low-density patches of dioecious, but not hermaphroditic, M. annua, a finding consistent with patterns of distance-dependent seed set by females in an experimental array. Nevertheless, seed set was incomplete in both dioecious and hermaphroditic populations, even at high local densities. Further, both factors limited the seed set of females and hermaphrodites, after we manipulated pollen and resource availability in a common garden experiment.4. Synthesis. Our results are consistent with the idea that pollen limitation plays a role in the evolution of combined vs. separate sexes in M. annua. Taken together, they point to the potential importance of pollen transfer between flowers on the same plant (geitonogamy) by wind as a mechanism of reproductive assurance and to the dual roles played by pollen and resource availability in limiting seed set. Thus, seed set can be pollen-limited in sparse populations of a wind-pollinated species, where mates are rare or absent, having potentially important demographic and evolutionary implications.
Resumo:
The penetration of marbofloxacin into tonsils was assessed in fattening pigs. Two different dosages were used to treat the animals: 2 mg/kg b.w. every 24 hours during 3 days (P1 group) and 4 mg/kg b.w. every 48 hours two times (P2 group. A ratio between the mean tonsillar concentration of marbofloxacin for both doses 24 hours after the last administration (0.5 and 0.7 µgr/mL) and its MIC90 for APP (0.03 µgr/mL) was calculated. These Ratio values were 16.6 and 23.3 for P1 and P2 group.
Resumo:
Presenilin 1 (PS1) mutations are responsible for a majority of early onset familial Alzheimer's disease (FAD) cases, in part by increasing the production of Abeta peptides. However, emerging evidence suggests other possible effects of PS1 on synaptic dysfunction where PS1 might contribute to the pathology independent of Abeta. We chose to study the L286V mutation, an aggressive FAD mutation which has never been analyzed at the electrophysiological and morphological levels. In addition, we analyzed for the first time the long term effects of wild-type human PS1 overexpression. We investigated the consequences of the overexpression of either wild-type human PS1 (hPS1) or the L286V mutated PS1 variant (mutPS1) on synaptic functions by analyzing synaptic plasticity and associated spine density changes from 3 to 15 months of age. We found that mutPS1 induces a transient increase observed only in 4- to 5-month-old mutPS1 animals in NMDA receptor (NMDA-R)-mediated responses and LTP compared with hPS1 mice and nontransgenic littermates. The increase in synaptic functions is concomitant with an increase in spine density. With increasing age, however, we found that the overexpression of human wild-type PS1 progressively decreased NMDA-R-mediated synaptic transmission and LTP, without neurodegeneration. These results identify for the first time a transient increase in synaptic function associated with L286V mutated PS1 variant in an age-dependent manner. In addition, they support the view that the PS1 overexpression promotes synaptic dysfunction in an Abeta-independent manner and underline the crucial role of PS1 during both normal and pathological aging.
Resumo:
The main result is a proof of the existence of a unique viscosity solution for Hamilton-Jacobi equation, where the hamiltonian is discontinuous with respect to variable, usually interpreted as the spatial one. Obtained generalized solution is continuous, but not necessarily differentiable.
Resumo:
In this paper the two main drawbacks of the heat balance integral methods are examined. Firstly we investigate the choice of approximating function. For a standard polynomial form it is shown that combining the Heat Balance and Refined Integral methods to determine the power of the highest order term will either lead to the same, or more often, greatly improved accuracy on standard methods. Secondly we examine thermal problems with a time-dependent boundary condition. In doing so we develop a logarithmic approximating function. This new function allows us to model moving peaks in the temperature profile, a feature that previous heat balance methods cannot capture. If the boundary temperature varies so that at some time t & 0 it equals the far-field temperature, then standard methods predict that the temperature is everywhere at this constant value. The new method predicts the correct behaviour. It is also shown that this function provides even more accurate results, when coupled with the new CIM, than the polynomial profile. Analysis primarily focuses on a specified constant boundary temperature and is then extended to constant flux, Newton cooling and time dependent boundary conditions.